Область техники
Изобретение относится к области металлургии легких сплавов, в частности, к термически упрочняемым алюминиевым сплавам на основе системы алюминий-цинк-магний, для изготовления деформированных полуфабрикатов, используемых в качестве конструкционного материала и сварных конструкций, работающих под воздействием высоких нагрузок в коррозионных средах (повышенной влажности, морской и пресной воде и др.).
Уровень техники
Деформируемые алюминиевые сплавы системы Al-Zn-Mg в силу высоких прочностных свойств нашли широкое применение в различных отраслях техники, в том числе в высоконагруженных строительных конструкциях. Одной из главных особенностей этих сплавов является способность их сварных соединений к самозакаливанию и естественному старению без повторной термической обработки. Это позволяет получать сварные соединения с коэффициентом прочности до 0,85, что особенно важно для изготовления строительных конструкций, элементов пешеходных и автодорожных мостов (Елагин В.И., Захаров В.В., Дриц A.M. Структура и свойства сплавов Al-Zn-Mg. Москва, «Металлургия», 1982 г.). Но при этом помимо высоких прочностных характеристик конструкции и их сварные соединения должны обладать высокой коррозионной стойкостью. Основными показателями коррозионной стойкости для алюминиевых конструкций является склонность к расслаивающей коррозии (РСК) и способность сопротивлению коррозии под напряжением (КР).
Среди термически упрочняемых алюминиевых сплавов на основе системы Al-Zn-Mg, нашедших применение в конструкциях мостов, в том числе автодорожных, получил сплав марки 1915. Сплав согласно ГОСТ 4784-2019 имеет следующий состав, мас. %:
Профили из данного сплава согласно ГОСТ 8617-2018 в закаленном и искусственно состаренном состоянии имеют предел прочности 373 МПа, предел текучести 250 МПа и относительное удлинение 8 %, что на сегодняшний день является недостаточным с учетом современных требований к прочности строительных конструкций, в частности, автодорожных мостов. Известно, что данный сплав в состоянии Т1 имеет стойкость к расслаивающей коррозии (РСК) 2 балла. Критическое напряжение при испытаниях на коррозионное растрескивание (σКР) для основного металла доходит до 250 МПа и всего 120 МПа для сварных соединений в закаленном и естественно состаренном состоянии и до 200 МПа при закалке и искусственном старении (Синявский В.С., Калинин В.Д. «Коррозионная стойкость напряженных строительных конструкций из алюминиевых сплавов». Защита металлов. 2007. Т. 43. № 6. С. 631-642.).
Известен высокопрочный сплав с близким составом, описанный в патенте RU 2343219 (опуб. 10.01.2009 г.) в котором повышена концентрация магния и цинка (суммарно до 7,5%), а также добавлены молибден и скандий. Сплав имеет следующий состав:
Прессованные полосы из данного сплава имеют очень высокие прочностные свойства: предел прочности 440 МПа, предел текучести 420 МПа, удовлетворительную пластичность: относительное удлинение 10% и удовлетворительную стойкость к расслаивающей коррозии (РСК) 2-3 балла.
Недостатком данного сплава является не высокие значения сопротивления коррозии под напряжением (σКР) для сварных соединений (225 МПа). При этом использование в качестве легирования такого редкоземельного металла как скандий в концентрации до 0,3% значительно удорожает изделия из данного сплава.
Известны другие сплавы на основе системы Al-Zn-Mg, имеющие близкий состав (патенты № JPH06145871, № CN108624791A, № CN107619976A, № JP2012207302A), которые либо не обладают достаточной прочностью (предел прочности этих сплавов не превышает 350 МПа), либо не достаточной стойкостью к коррозии.
В качестве прототипа выбран сплав системы Al-Mg-Zn для изготовления прессованных профилей и способ изготовления из него, описанный в патенте RU 2492274 (опубл. 10.09.2013). Данный сплав имеет следующий состав, мас. %:
Применение сплава данного состава позволяет получать прессованные изделия и профили различных форм, в том числе тонкостенных со средними показателями прочностных характеристик. В естественно и искусственно состаренном состоянии образцы прессованных профилей имеют предел прочности 347-370 МПа, предел текучести 236-275 МПа и относительное удлинение 13-15 %.
Недостатком данного сплава и способа изготовления является средний уровень механических свойств и не высокая коррозионная стойкость. Характеристика стойкости сплава к РСК в естественно состаренном состоянии оценивается в 7÷8 баллов, при применении искусственного старение ее удается улучшить до 3 баллов.
Раскрытие изобретения
Задачей данного изобретения является разработка термически упрочняемого сплава на основе алюминия системы Al-Zn-Mg для применения в строительных конструкциях, в том числе пешеходных и автодорожных мостах, и получение прессованных изделий из него с повышенными механическими, хорошими коррозионными свойствами, а также повышенной стойкостью к коррозионному растрескиванию под напряжением.
Техническим результатом является получение прессованных изделий в виде профилей с повышенными механическими свойствами, относительно высокой стойкостью к расслаивающей коррозии, высокой стойкостью к коррозионному растрескиванию под напряжением, в том числе сварных соединений за счет использования оптимального состава сплава с добавлением элементов, повышающих механические свойства и коррозионную стойкость и исключением элементов, понижающих ее.
Достижение технического результата обеспечивается тем, что сплав на основе алюминия, содержащий магний, цинк, марганец, медь, цирконий, титан, дополнительно содержит кобальт, железо, кремний и, по крайней мере, один элемент из группы, содержащей бор, углерод, ванадий при следующем соотношении компонентов, мас. %:
В соответствии с другим аспектом заявленное изобретение относится к изделию из сплава на основе алюминия, который описан выше.
Краткое описание чертежей
На фиг. 1 и фиг. 2 представлен профиль 1.
На фиг. 3 и фиг. 4 представлен профиль 2.
Осуществление изобретения
Содержание магния на уровне 1,3 – 1,7 мас. % и цинка на уровне 4,2 – 4,7 мас. % обеспечивает необходимый уровень прочности при термической обработке. В сплавах группы Al-Zn-Mg элементы цинк и магний являются основными элементами сплава, образующими упрочняющие фазы. С увеличением цинка и магния прочность сплава увеличивается. Известно, что сплавы с суммарного содержания цинка и магния (Zn+Mg) более 5 мас. % помимо высоких прочностных свойств после закалки и старения подвержены коррозионному растрескиванию. Подавить чувствительность к коррозионному растрескиванию возможно за счет легирования переходными металлами, при этом общее содержание цинка и магния может быть повышено до 5 - 6,5 мас. % (В. Елагин «Легирование деформируемых сплавов переходными металлами» Москва, «Металлургия», 1975 г.). При дальнейшем увеличении содержания магния проявляется тенденция к межкристаллитной коррозии. При превышении содержания цинка снижается трещиностойкость и особенно, стойкость к коррозионному растрескиванию под напряжением.
Легирование таким переходным металлом как кобальт до 0,17 мас. % улучшают прокаливаемость алюминиевого сплава, стабилизируя твердый раствор при высоких температурах, увеличивает показатели трещиностойкости и ударной вязкости.
Малые добавки кремния препятствует образованию горячих трещин при литье слитков, улучшают свариваемость, но при этом повышение содержание кремния в сплавах системы Al-Mg-Zn ухудшает коррозионные свойства и приводит к образованию фазы Mg2Si, которая снижает количество вторичных выделений упрочняющих фаз MgZn2 и Al2Mg3Zn3.
Отсутствие хрома и верхний предел по железу 0,25 мас. % способствует снижению сопротивления деформации при горячей обработке давлением, в частности, при прессовании, что позволяет увеличить скорость прессования и изготавливать профили с меньшей толщиной стенки.
Содержание меди при концентрации от 0,05 до 0,15 мас. % и железа от 0,05 до 0,25 мас. % обеспечивает высокий уровень коррозионной стойкости, в том числе к коррозионному растрескиванию, а также исключает образование дефектов в виде нежелательных для прессования интерметаллидов. Кроме того, верхнее ограничение содержания меди на уровне 0,15 мас. % обеспечивает отсутствие горячего растрескивания при затвердевании сварного шва и благоприятно сказывается на повышении стойкости к коррозионному растрескиванию.
Кобальт и цирконий с алюминием образуют дисперсные упрочняющие фазы Al9Co2 и Al3Zr. В присутствии меди и железа идет образование интерметаллидных дисперсоидных выделений Al2CoFe и Al65Cu15-20Co20 в малых количествах, оказывающих упрочняющее воздействие без снижения пластичности.
Добавки титана совместно с цирконием являются эффективными модификаторами структуры, улучшают трещиностойкость и стойкость к коррозионному растрескиванию при сварке.
Марганец наряду с другими переходными металлами является комплексной добавкой, повышающей механические характеристики. Кроме того, марганец, входя в состав железистых фаз, модифицирует их морфологию, улучшая стойкость к коррозии, в том числе к коррозионному растрескиванию под напряжением. Добавки марганца выше 0,5 мас. % не желательны в связи с отрицательным воздействием на пластические свойства.
Легирование элементами, выбранными из группы: бор, углерод, ванадий при их суммарном содержании не более 0,05 мас.%, обеспечивает формирование стабильной мелкозернистой структуры в слитках. Карбиды и бориды оказывают модифицирующее действие при литье слитков и обеспечивают повышенные технологические характеристики при прессовании профиля. Ванадий препятствует рекристаллизации при высокотемпературной обработке и улучшает механические свойства изделий.
Из предложенного сплава могут быть изготовлены различные прессованные изделия в виде профилей, например, элементы строительных конструкций.
Примеры осуществления изобретения
Пример 1.
В промышленных условиях методом полунепрерывного литья были отлиты цилиндрические слитки диаметром 125 мм с составом № 1 представленным в таблице 1 с использованием следующих шихтовых материалов: алюминий марки не ниже А7; цинк чушковой; магний чушковой марки Мг90, медь марки не ниже М3; кремний кристаллический марки не ниже Кр0, пруток Al-Ti-B; двойные лигатуры (Al-Zr10%, Al-Fe10%, Al-Co10%, Al-Mn10%, Al-V5%).
Слитки гомогенизировали при температуре 470 °C в течение 8 часов. Из слитков прессовали профиль № 1, чертеж которого представлен на фиг. 1, поперечное сечение на фиг. 2. Толщина стенки профиля составляет 6 мм. Нагрев слитков перед прессованием проводился до температуры 420 – 450 °C. Температуру профиля на выходе получали равной 470 ± 5 °C. Прессованные профили подвергали закалке на столе пресса методом «стоячая волна». Далее осуществляли правку профиля растяжением с величиной остаточной деформации не более 1 %. Искусственное старение профилей проводили при температуре 100-120 °C с выдержкой 24-48 ч.
Пример 2. В промышленных условиях методом полунепрерывного литья были отлиты цилиндрические слитки диаметром 350 мм с составом № 2 (таблица 1) с использованием шихтовых материалов по примеру 1. Слитки гомогенизировали при температуре 470 °C в течение 10 часов. Из слитков прессовали профиль № 2, чертеж которого представлен на фиг. 3, поперечное сечение на фиг. 4. Толщина стенки профиля составляет 10 мм. Нагрев слитков перед прессованием проводился до температуры 420 – 450 °C. Температуру профиля на выходе выдерживали равной 450 ± 10 °C. Полученные профиля подвергали закалке в вертикальных закалочных печах после выдержки 30 мин при температуре 470 ± 5 °C. Искусственное старение профилей проводили при температуре 100-120 °C с выдержкой 24-48 ч.
Пример 3. Использовали слитки, изготовленные по примеру 1 диаметром 125 мм с составом № 3 (Таблица 1). Гомогенизацию, прессование, закалку и правку осуществляли по примеру 1. Искусственное старение профилей проводили по двухступенчатому режиму при температурах 100-150 °C с выдержками 8-12 ч.
Пример 4. Использовали слитки, изготовленные по примеру 2 диаметром 350 мм с составом № 4 (Таблица 1). Гомогенизацию, прессование, закалку и правку осуществляли по примеру 2. Искусственное старение профилей проводили по двухступенчатому режиму при температурах 100-150 °C с выдержками 8-12 ч.
Пример 5. Использовали слитки, изготовленные по примеру 1 диаметром 125 мм с составом № 5 (Таблица 1). Гомогенизацию, прессование, закалку и правку осуществляли по примеру 1. Искусственное старение профилей проводили по двухступенчатому режиму при температурах 100-150 °C с выдержками 8-12 ч.
Пример 6. Использовали слитки, изготовленные по примеру 2 диаметром 350 мм с составом № 6 (Таблица 1). Гомогенизацию, прессование, закалку и правку осуществляли по примеру 2. Искусственное старение профилей проводили по двухступенчатому режиму при температурах 100-150 °C с выдержками 8-12 ч.
Для проведения сравнительных испытаний предложенных в примерах 1-6 сплавов с прототипом были изготовлены слитки с составом 7, приведенным в таблице 1. Гомогенизация слитков проводилась при температуре 460 оС в течении 12 ч. Из слитков прессовали профиль № 1. Нагрев перед прессованием проводился до температуры 420-450 оС. Закалку профилей проводили в воду после выдержки в вертикальной закалочной печи при температуре 450°С. Искусственное старение профилей проводили по двухступенчатому режиму при температурах 100-175 °C с выдержками 6-10 ч.
Таблица 1.
(Прототип)
Испытания на расслаивающую коррозию проводили в растворе 1 по ГОСТ 9.904-82. Оценка стойкости против расслаивающей коррозии проводится по 10-балльной шкале (стойкость снижается по мере возрастания балла от 1 к 10). Испытания на межкристаллитную коррозию проводили по ГОСТ 9.021-74 в растворе 2. Испытания на коррозионное растрескивание проводили по ГОСТ 9.901.4-89.
В качестве критерия, характеризующего склонность сплавов к коррозионному растрескиванию, была взята величина критического напряжения σкр, представляющая собой максимальное напряжение, которое выдерживают испытываемые образцы без разрушения в конкретных условиях испытаний.
Сварные соединения образцов профилей, изготовленных по примерам 1-7 получали методом аргонно-дуговой сварки с использованием присадочной проволоки из сплава 1575 (ГОСТ 7871-2019).
Испытания образцов профилей и сварных соединений на σкр проводили в интервале напряжений 160 - 400 МПа с шагом в 20 МПа, база испытаний 45 суток.
Механические и коррозионные свойства прессованных профилей после искусственного старения, полученные по примеру 1, 2, 3 и 4 и прототипа, а также сварных соединений из них приведены в таблице 2.
Известный прототип
/2-3 балла
Как видно из таблицы 2, достигнутый уровень механических свойств изделий в виде профилей, полученных по примерам 1-6, превосходит уровень прототипа. Заявляемый состав сплава имеет относительно высокую стойкость к расслаивающей коррозии, значения РСК –2-3 балла из 10. Кроме этого, сварные соединения заявленного состава отличается повышенным значением стойкости к коррозии под напряжением.
название | год | авторы | номер документа |
---|---|---|---|
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ | 2023 |
|
RU2815086C1 |
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ | 2007 |
|
RU2343219C1 |
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И СПОСОБ ПОЛУЧЕНИЯ ИЗДЕЛИЯ ИЗ НЕГО | 2020 |
|
RU2722950C1 |
СВАРИВАЕМЫЙ АЛЮМИНИЕВЫЙ СПЛАВ ДЛЯ БРОНИ | 2013 |
|
RU2536120C1 |
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | 2001 |
|
RU2215055C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ ПРЕССОВАННЫХ ПОЛУФАБРИКАТОВ ИЗ ВЫСОКОПРОЧНОГО АЛЮМИНИЕВОГО СПЛАВА И ИЗДЕЛИЯ, ПОЛУЧАЕМЫЕ ИЗ НИХ | 2012 |
|
RU2492274C1 |
ДЕФОРМИРУЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ ИЗ НЕГО | 2020 |
|
RU2754541C1 |
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ, ИЗДЕЛИЕ ИЗ НЕГО И СПОСОБ ПОЛУЧЕНИЯ ИЗДЕЛИЯ | 2019 |
|
RU2717437C1 |
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ | 2022 |
|
RU2800435C1 |
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | 2003 |
|
RU2243278C1 |
Изобретение относится к области цветной металлургии, в частности к термически упрочняемым алюминиевым сплавам на основе системы алюминий-цинк-магний, и может быть использовано для получения высокопрочных прессованных изделий и сварных конструкций пешеходных и автодорожных мостов, работающих под нагрузкой, в том числе в коррозионных средах. Cплав на основе алюминия содержит, мас.%: магний 1,3-1,7, кремний 0,05-0,2, марганец 0,2-0,5, медь 0,05-0,15, железо 0,05-0,25, цинк 4,2-4,7, цирконий 0,08-0,15, кобальт 0,01-0,17, титан 0,01-0,05, один элемент из группы, содержащей бор, углерод, ванадий суммарно 0,001-0,05, алюминий и неизбежные примеси - остальное. Изобретение направлено на получение изделий из алюминиевого сплава с повышенными механическими свойствами, высокой стойкостью к расслаивающей коррозии и коррозионному растрескиванию под напряжением. 2 н.п. ф-лы, 6 пр., 2 табл., 4 ил.
1. Сплав на основе алюминия, содержащий магний, цинк, марганец, медь, цирконий, титан, отличающийся тем, что он дополнительно содержит кобальт, железо, кремний и по крайней мере один элемент из группы, содержащей бор, углерод, ванадий, при следующем соотношении компонентов, мас.%:
по крайней мере один элемент из группы, содержащей:
2. Изделие из алюминиевого сплава, отличающееся тем, что оно изготовлено из алюминиевого сплава по п.1.
СПОСОБ ИЗГОТОВЛЕНИЯ ПРЕССОВАННЫХ ПОЛУФАБРИКАТОВ ИЗ ВЫСОКОПРОЧНОГО АЛЮМИНИЕВОГО СПЛАВА И ИЗДЕЛИЯ, ПОЛУЧАЕМЫЕ ИЗ НИХ | 2012 |
|
RU2492274C1 |
ВЫСОКОПРОЧНЫЙ ДЕФОРМИРУЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ ИЗ НЕГО | 2008 |
|
RU2394113C1 |
KR 20010016472 A, 05.03.2001 | |||
CN 108624791 A, 09.10.2018 | |||
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ, ИЗДЕЛИЕ ИЗ НЕГО И СПОСОБ ПРОИЗВОДСТВА ИЗДЕЛИЯ | 2001 |
|
RU2215807C2 |
Авторы
Даты
2022-05-04—Публикация
2020-12-29—Подача