АЛЮМИНИЕВЫЙ СПЛАВ Российский патент 2009 года по МПК C22C1/02 C22C21/00 

Описание патента на изобретение RU2344187C2

Изобретение относится к области металлургии, в частности к алюминиевым сплавам, предназначенным для применения в качестве конструкционного материала в машиностроении, в самолетостроении, ракетостроении, судостроении, автомобилестроении, а также в медицинской технике, строительстве, электротехнике и в бытовом оборудовании.

В настоящее время известны алюминиевые сплавы с очень высоким уровнем механических свойств, применяемые в деталях конструкций, несущих низкие и средние нагрузки. Однако уровень механических свойств данных алюминиевых сплавов недостаточен для того, чтобы использовать эти материалы для изготовления из них конструкций и деталей, работающих в условиях значительного механического нагружения и, в особенности, высоких температур. Кроме того, конструкции и изделия из известных алюминиевых сплавов характеризуются невысокой прочностью сварных соединений и недостаточной электропроводностью.

В настоящее время известны алюминиевые сплавы, применяемые в качестве электропроводников. В проводниковых алюминиевых сплавах применяются преимущественно технический алюминий и низколегированные сплавы системы алюминий-магний-кремний-медь. Однако температурный уровень эксплуатации известных проводниковых алюминиевых сплавов обычно не превышает 100°C, что является недостаточным для использования этих материалов в изделиях, длительно работающих в условиях высоких температур.

В некоторых случаях в состав алюминиевых сплавов вводят железо, никель, кобальт, повышающие жаропрочность, и в то же время лишь умеренно понижающие электропроводность. Эти сплавы имеют высокие механические свойства. Однако во многих случаях требуется эксплуатация проводниковых алюминиевых сплавов при температурах свыше 250°С, что не позволяет использовать эти сплавы. Помимо этого упомянутые алюминиевые сплавы характеризуются высоким электрическим сопротивлением 450-700 МОм.см и низкой прочностью сварных соединений. Коэффициент прочности сварных соединений - отношение пределов прочности металла шва и основного металла - составляет для упомянутых сплавов 0,65-0,7.

Наиболее близким аналогом к заявленному изобретению является сплав на основе алюминия, содержащий, в мас.%: по крайней мере один редкоземельный металл 5-20, оксид алюминия 0,1-1,0, оксид редкоземельного металла 0,01-0,5, алюминий - остальное (RU 2044096 С1, 20.09.1995). Данный сплав используют в основном в изделиях, несущих умеренные механические нагрузки при небольшой длительной прочности при температурах, не превышающих 300°С, а также в изделиях, в которых к сварным соединениям требования высокой прочности и высокой электропроводности не предъявляются.

Технической задачей данного изобретения является создание универсального жаропрочного алюминиевого сплава, обладающего одновременно стабильными механическими свойствами при температурах до 350°С при его хорошей свариваемости и электропроводности, а также простотой и экономичностью его получения.

Эта задача была решена созданием алюминиевого сплава, содержащего по меньшей мере один редкоземельный металл, согласно изобретению, сплав дополнительно содержит кислород, азот и водород при следующем соотношении компонентов, в мас.%: по меньшей мере один редкоземельный металл 5,0-10,0, кислород 0,002-1,5, азот 0,002-1,2, водород 0,0002-0,5, алюминий - остальное.

В частном случае выполнения изобретения алюминиевый сплав дополнительно содержит по меньшей мере один элемент, выбранный из группы: кремний, медь, магний, хром, цирконий, бор, марганец, цинк, никель, иттрий, скандий, титан, ванадий, молибден, ниобий, тантал, железо в количестве 0,005-2,2 мас.%.

Все редкоземельные металлы, например церий, празеодим, неодим, лантан, самарий, гадолиний и др., повышают механические свойства сплава и уровень электропроводности. Выбранные содержания этих элементов оптимальны для обеспечения оптимального комплекса требуемых показателей. Упомянутые элементы в комбинациях со взятыми количествами водорода, азота и кислорода обеспечивают высокий уровень механических свойств (прочности, пластичности), хорошую свариваемость и коррозионную стойкость, повышение электропроводности.

Общее присутствие комплекса таких элементов, как азот, водород и кислород, обеспечивает существенное повышение пределов прочности и текучести и относительного удлинения, улучшение свариваемости, увеличение электропроводности и улучшение коррозионной стойкости. Сказанное объясняется тем, что азот, водород и кислород, находящиеся в атомарном состоянии, вступают в физико-химическое взаимодействие с жидким сплавом, в результате чего возникают смешанные кристаллы замещения и вложения, а также химические соединения. Наряду с обычными химическими соединениями, являющимися главным образом интерметаллидами, такими, например, как Al4Ce, Al4La и т.д., получены новые химические соединения, например комплексные гидроксигидронитридные соединения, гидридные, нитридные и оксидные соединения, открывающие появление новых материалов. Эти новые соединения, представляющие собой дополнительные центры кристаллизации, способствуют равномерному распределению газов в твердом растворе сплава, что обеспечивает существенное улучшение свойств и эксплуатационных характеристик сплавов и изделий из них.

Кроме того, присутствие водорода в сплаве позволяет снизить количество примесей и тем самым их отрицательное влияние на механические свойства, на коррозионную стойкость и свариваемость. Содержание водорода в сплаве более 0,5 мас.% ведет к ухудшению свойств последнего, в частности снижает пластичность материала, к охрупчиванию сплава, так как водород присутствует в виде гидридов. При содержании водорода менее 0,0002 мас.% отмечается понижение прочностных показателей сплава и его физических свойств.

При содержании в алюминиевом сплаве азота менее 0,002 мас.% количество нитридных фаз и центров кристаллизации недостаточно, что обуславливает невысокую прочность материала. Рост содержания азота более 1,2 мас.% приводит к образованию чрезмерного количества нитридов, вызывая тем самым снижение пластичности, повышение электросопротивления и ослабление коррозионной стойкости.

Присутствие кислорода более 0,002 мас.% также снижает пластические свойства сплава, а при содержании более 1,5 мас.% вызывает ухудшение механических свойств и свариваемости из-за появления большого количества оксидных соединений.

Оптимальное содержание азота, кислорода и водорода в сплаве составляет 0,05-1,0 мас.%.

В частных случаях для еще большего улучшения эксплуатационных характеристик алюминиевого сплава рекомендуется дополнительно вводить в его состав по меньшей мере один элемент, выбранный из группы: кремний, медь, магний, хром, цирконий, бор, марганец, цинк, никель, иттрий, скандий, титан, ванадий, молибден, ниобий, тантал, железо. Присутствие вышеперечисленных элементов в сплаве обусловливает измельчение зерен; кроме того, они повышают коррозионную стойкость и механические показатели и снижают электросопротивление.

Количественное содержание этих элементов в сплаве следует ограничивать в пределах 0,005-2,2 мас.%. Снижение их количеств меньше нижней границы не дает ни повышения прочности сплава, ни улучшения коррозионной стойкости, а при повышении их содержания сверх 2,2 мас.% вызывает падение пластичности и свариваемости. Кроме того, перечисленные элементы в комбинации с редкоземельными металлами также способны еще более повысить механические свойства и свариваемость и снизить электрическое сопротивление.

При производстве заявленного сплава не требуются ни труднодоступное сырье, ни применение сложных технологий, что делает получение сплава простым и экономически целесообразным.

Примеры наилучшей реализации изобретения.

Способ изготовления сплава включает в себя следующие фазы:

1) получение расплава.

Подготовка расплава осуществляется индукционным способом из исходных материалов (первичного алюминия в чушках и редкоземельных металлов). Плавление производится в кварцевом или графитовом тигле (или в печи с шамотовой футеровкой) в атмосфере гелия или аргона с добавкой водорода.

2) распыление.

Распыление полученного расплава производят в замкнутой камере. В камеру подводят одновременно с жидким металлом дозированное количество азота, кислорода и водорода. Иногда выполняют указанное распыление в среде аргона или других сред. Контроль за количеством газов осуществляют посредством газоанализаторов.

3) обжатие.

Полученный гранулят подвергают обжатию при температуре от 200 до 400°C.

Пример 1.

Изготовляется алюминиевый сплав, содержащий, в мас.%: церий 5, кислород 1,5, азот 1,2, водород 0,5, алюминий - остальное.

Сырьем служат 81,4 кг алюминия чистотой 99,9% в чушках, 12 кг церия. Расплав получают индукционным способом в кварцевом тигле в гелии или аргоне с содержанием водорода (10% об.). Полученный расплав распыляют в замкнутой камере. В камеру одновременно с жидким металлом вводят дозированные количества азота (85% об.) и кислорода (15% об.). Контроль за количеством подведенных газов обеспечивается газоанализаторами.

Полученный гранулят вводят в пресс-форму и подвергают обжатию на прессе при 400°C. Данный материал обладает следующими свойствами: предел прочности 260-340 МПа и относительное удлинение 4-7% при 20°C, предел прочности 140-190 МПа при 350°C, коэффициент прочности сварного соединения 0,8-0,9, удельная электропроводность составляет 53-59 электропроводности меди.

Пример 2.

Изготовляют алюминиевый сплав, содержащий, в мас.%: церий 5, лантан 3, празеодим 0,5, неодим 0,1, кислород 0,1, азот 0,005, водород 0,001, алюминий - остальное.

Сырьем служат 91,3 кг алюминия чистотой 99,9% в чушках, церий 22 кг, лантан 1,2 кг, празеодим 0,3 кг, неодим 0,4 кг. Расплав получают индукционным способом в графитовом тигле в аргоне, содержащем водород (6% об.). Расплав распыляют в замкнутой камере. В камеру одновременно с жидким металлом вводят дозированные количества азота (80% об.) и кислорода (20% об.).

Контроль за количеством подведенных газов осуществляется посредством газоанализаторов.

Полученный гранулят вводят в пресс-форму и подвергают обжатию в камере сжатия с газом в качестве средства создания давления и затем в прессе при температуре 350°C.

Образцы, изготовленные из полученного материала, обладают следующими характеристиками: предел прочности при растяжении 260-350 МПа и относительное удлинение 4-8% (при 20°C), предел прочности 160-230 МПа при температуре 350°C, коэффициент прочности сварного соединения 0,8-0,9, удельная электропроводность составляет 52-55% электропроводности меди.

Пример 3

Изготовляют алюминиевый сплав, содержащий в мас.%: церий 3, лантан 2, диспрозий 0,5, кислород 0,04, азот 0,01, водород 0,0005, алюминий - остальное. Расплавление ведется шифонным способом в кварцевом тигле в атмосфере гелия. Расплав распыляют в замкнутой камере в атмосфере гелия.

Полученный гранулят вводят в пресс-форму и подвергают обжатию в прессе при температуре 300°C.

Образцы, изготовленные из полученного материала, обладают следующими характеристиками: предел прочности при растяжении 250-310 МПа, относительное удлинение 5-9%, предел прочности при температуре 350°C составляет 160-200 МПа, коэффициент прочности сварного соединения 0,82-0,9, удельная электропроводность составляет 52-58% электропроводности меди.

Пример 4

Изготовляется алюминиевый сплав, содержащий, в мас.%: церий 10, кислород 0,04, водород 0,01, алюминий - остальное.

Расплав получают индукционным способом в кварцевом тигле в гелии или аргоне с содержанием водорода (10% об.). Полученный расплав распыляют в замкнутой камере. В камеру одновременно с жидким металлом вводят дозированные количества азота (85% об.) и кислорода (15% об.). Контроль за количеством подведенных газов обеспечивается газоанализаторами.

Полученный гранулят вводят в пресс-форму и подвергают обжатию на прессе при 250°C.

Образцы, изготовленные из полученного материала, обладают следующими характеристиками: предел прочности при растяжении 280-350 МПа, относительное удлинение 5-8% (при 20°C), предел прочности при температуре 350°C составляет 190-250 МПа, коэффициент прочности сварного соединения 0,81-0,9, удельная электропроводность составляет 52-59% электропроводности меди.

Пример 5

Изготовляют алюминиевый сплав, содержащий, в мас.%: церий 5, празеодим 2, неодим 1, кислород 0,8, азот 0,05, водород 0,02, алюминий - остальное.

Расплав получают индукционным способом в графитовом тигле в аргоне, содержащем водород (6% об.). Расплав распыляют в замкнутой камере. В камеру одновременно с жидким металлом вводят дозированные количества азота (80% об.) и кислорода (20% об.).

Контроль за количеством подведенных газов осуществляется посредством газоанализаторов.

Полученный гранулят вводят в пресс-форму и подвергают обжатию в камере сжатия с газом в качестве средства создания давления и затем в прессе при температуре 250°C.

Образцы, изготовленные из полученного материала, обладают следующими характеристиками: предел прочности при растяжении 250-330 МПа, относительное удлинение 4-8%, предел прочности при температуре 350°C составляет 155-245 МПа, коэффициент прочности сварного соединения 0,82-0,9, удельная электропроводность составляет 52-56% электропроводности меди.

Пример 6

Изготовляют алюминиевый сплав, содержащий, в мас.%: церий 6, диспрозий 2, кислород 0,2, азот 0,7, водород 0,005, алюминий - остальное.

Расплав получают индукционным способом в графитовом тигле в аргоне, содержащем водород (6% об.). Расплав распыляют в замкнутой камере. В камеру одновременно с жидким металлом вводят дозированные количества азота (80% об.) и кислорода (20% об.).

Контроль за количеством подведенных газов осуществляется посредством газоанализаторов.

Полученный гранулят вводят в пресс-форму и подвергают обжатию в камере сжатия с газом в качестве средства создания давления и затем в прессе при температуре 200°C.

Образцы, изготовленные из полученного материала, обладают следующими характеристиками: предел прочности при растяжении 262-345 МПа, относительное удлинение 6-9%, прочность при температуре 350°C составляет 160-247 МПа, коэффициент прочности сварного соединения 0,83-0,9, удельная электропроводность составляет 52-58% электропроводности меди.

Как видно из примеров, заявленный сплав обладает повышенной электропроводностью, что в комбинации с повышенными механическими свойствами делает его универсальным и позволяет изготавливать из него изделия, работающие при повышенных температурах. Указанная комбинация свойств сплава делает возможным его применение в качестве электропроводника практически неограниченным. Сплав можно применять в качестве материала для изготовления проволоки и шин в электронной технике, в радио- и электротехнической промышленности, при изготовлении бортпроводов вертолетов и самолетов.

Похожие патенты RU2344187C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ КРУПНОГАБАРИТНЫХ КОЛЬЦЕВЫХ ПОЛУФАБРИКАТОВ ИЗ ДЕФОРМИРУЕМЫХ АЛЮМИНИЕВЫХ СПЛАВОВ 2012
  • Тарарышкин Виктор Иванович
  • Еремеев Владимир Викторович
  • Еремеев Николай Владимирович
  • Шанин Николай Дмитриевич
  • Соловьев Александр Петрович
RU2487776C1
СПОСОБ ПРЕССОВАНИЯ ГРАНУЛ МАГНИЕВЫХ СПЛАВОВ 2008
  • Шанин Николай Дмитриевич
RU2370342C1
АЛЮМИНИЕВЫЙ СПЛАВ 2014
  • Сидельников Сергей Борисович
  • Довженко Николай Николаевич
  • Лопатина Екатерина Сергеевна
  • Сидельников Андрей Сергеевич
  • Ворошилов Денис Сергеевич
  • Баранов Владимир Николаевич
  • Галиев Роман Илсурович
RU2570684C1
СПОСОБ ИЗГОТОВЛЕНИЯ ЦЕЛЬНОКАТАНЫХ СИЛОВЫХ ШПАНГОУТОВ ИЗ ЦЕНТРОБЕЖНОЛИТОЙ ЗАГОТОВКИ-ШАЙБЫ 2016
  • Шанин Николай Дмитриевич
  • Осипов Виталий Александрович
  • Гереев Марат Играмудинович
  • Дригенич Виктор Степанович
  • Остапенко Олег Николаевич
RU2663916C2
АЛЮМИНИЕВЫЙ СПЛАВ 2010
  • Баранов Владимир Николаевич
  • Биронт Виталий Семенович
  • Довженко Николай Николаевич
  • Падалка Виктор Андреевич
  • Сидельников Сергей Борисович
  • Трифоненков Леонид Петрович
  • Фролов Виктор Федорович
  • Чичук Евгений Николаевич
RU2458151C1
АЛЮМИНИЕВЫЙ СПЛАВ 2011
  • Баранов Владимир Николаевич
  • Биронт Виталий Семенович
  • Галиев Роман Илсурович
  • Довженко Николай Николаевич
  • Лопатина Екатерина Сергеевна
  • Падалка Виктор Андреевич
  • Сидельников Сергей Борисович
  • Трифоненков Леонид Петрович
  • Фролов Виктор Федорович
  • Чичук Евгений Николаевич
RU2458170C1
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ ДЛЯ СВАРНЫХ КОНСТРУКЦИЙ 2007
  • Кобылин Рудольф Анатольевич
  • Корольков Виктор Алексеевич
  • Заболотнов Владимир Михайлович
  • Хабаров Александр Николаевич
RU2368688C2
ЖАРОСТОЙКИЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ ДЛЯ ЭЛЕКТРИЧЕСКИХ ПРОВОДОВ 2012
  • Борщевский Сергей Георгиевич
  • Федоров Владимир Михайлович
  • Шашков Олег Дмитриевич
  • Пожиткова Мария Олеговна
RU2492258C1
СПОСОБ МОДИФИЦИРОВАНИЯ СПЛАВОВ НА ОСНОВЕ АЛЮМИНИЯ И ОТЛИВКА, ПОЛУЧЕННАЯ С ИСПОЛЬЗОВАНИЕМ ЭТОГО СПОСОБА 2007
  • Белов Николай Александрович
  • Савченко Сергей Вячеславович
  • Хван Александра Вячеславовна
  • Белов Владимир Дмитриевич
  • Плаксин Александр Александрович
  • Новичков Сергей Борисович
  • Строганов Александр Георгиевич
  • Цыденов Андрей Геннадьевич
RU2334804C1
КОНСТРУКЦИОННАЯ КРИОГЕННАЯ АУСТЕНИТНАЯ ВЫСОКОПРОЧНАЯ СВАРИВАЕМАЯ СТАЛЬ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 2015
  • Шиганов Игорь Николаевич
  • Старожук Евгений Андреевич
  • Грезев Анатолий Николаевич
  • Мисюров Александр Иванович
  • Третьяков Роман Сергеевич
  • Шишов Алексей Юрьевич
  • Якушин Борис Федорович
  • Филонов Михаил Рудольфович
  • Глебов Александр Георгиевич
  • Капуткина Людмила Михайловна
  • Капуткин Дмитрий Ефимович
  • Киндоп Владимир Эдельбертович
  • Свяжин Анатолий Григорьевич
  • Смарыгина Инга Владимировна
  • Блинов Евгений Викторович
RU2585899C1

Реферат патента 2009 года АЛЮМИНИЕВЫЙ СПЛАВ

Изобретение относится к области металлургии, в частности к алюминиевым сплавам, предназначенным для применения в качестве конструкционного материала в машиностроении, самолетостроении, ракетостроении, судостроении, автомобилестроении, а также в медицинской технике, строительстве, электротехнике и в бытовом оборудовании. Алюминиевый сплав содержит следующие компоненты, мас.%: по меньшей мере один редкоземельный металл 5,0-10,0, кислород 0,002-1,5, азот 0,002-1,2, водород 0,0002-0,5, алюминий - остальное. В частном случае выполнения изобретения алюминиевый сплав дополнительно содержит по меньшей мере один элемент, выбранный из группы: кремний, медь, магний, хром, цирконий, бор, марганец, цинк, никель, иттрий, скандий, титан, ванадий, молибден, ниобий, тантал, железо в количестве 0,005-2,2 мас.%. Получают сплав, обладающий повышенными электропроводностью, свариваемостью и стабильными механическими свойствами при температурах до 350°С. 1 з.п. ф-лы.

Формула изобретения RU 2 344 187 C2

1. Алюминиевый сплав, содержащий по меньшей мере один редкоземельный металл, отличающийся тем, что он дополнительно содержит кислород, азот и водород при следующем соотношении компонентов, мас.%:

по меньшей мере один редкоземельный металл5,0-10,0кислород0,002-1,5азот0,002-1,2водород0,0002-0,5алюминийостальное.

2. Алюминиевый сплав по п.1, отличающийся тем, что он дополнительно содержит по меньшей мере один элемент, выбранный из группы: кремний, медь, магний, хром, цирконий, бор, марганец, цинк, никель, иттрий, скандий, титан, ванадий, молибден, ниобий, тантал, железо в количестве 0,005-2,2 мас.%.

Документы, цитированные в отчете о поиске Патент 2009 года RU2344187C2

СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 1992
  • Шмаков Ю.В.
  • Федоров В.М.
  • Мартиросов Р.Г.
  • Орлов В.И.
  • Турук В.К.
  • Лебедев В.Н.
RU2044096C1
Сплав на основе алюминия 1977
  • Добаткин В.И.
  • Елагин В.И.
  • Федоров В.М.
  • Соколов А.С.
  • Власова Т.А.
  • Силис В.Э.
  • Смирнова В.А.
  • Русинович Ю.И.
  • Мироненко В.Н.
  • Кузнецов А.Н.
  • Оводенко М.Б.
  • Пономарев Ю.И.
  • Муромский Ю.С.
  • Огаркова И.А.
  • Котунов В.Ф.
  • Колганова И.Ф.
SU665658A1
Высокопрочный литейный алюминиевой сплав 1969
  • Колобнев И.Ф.
  • Лебедев В.М.
  • Строганов Г.Б.
  • Платонов В.М.
  • Никитина Н.Р.
  • Захарова А.З.
  • Пшебельская А.И.
  • Энтин Л.Х.
  • Натапов С.Л.
  • Фомин А.П.
SU489420A1
Способ крашения тканей 1922
  • Костин И.Д.
SU62A1
Способ крашения тканей 1922
  • Костин И.Д.
SU62A1

RU 2 344 187 C2

Авторы

Куприянов Николай Степанович

Шанин Николай Дмитриевич

Федоров Валерий Николаевич

Даты

2009-01-20Публикация

2006-12-28Подача