СПОСОБ ОБРАБОТКИ РАСПЛАВОВ СПЛАВОВ Российский патент 2009 года по МПК B22D27/02 C22F3/02 

Описание патента на изобретение RU2344900C2

Изобретение относится к металлургии, в частности к способам обработки расплавов различных сплавов.

Известен способ ультразвуковой обработки расплавов заэвтектических силуминов, включающий дегазацию и последующее модифицирование расплава введением в него модифицирующих добавок, содержащих фосфор, после модифицирования осуществляют ультразвуковую обработку расплава с обеспечением развитой кавитации таким образом, чтобы объем кавитационной области соответствовал всему объему расплава, проходящему через зону ультразвуковой обработки, при этом ультразвуковую обработку каждого элемента потока расплава осуществляют в течение 0,15-1,2 с в зависимости от концентрации в расплаве упомянутых модифицирующих добавок, составляющей 0,01-0,06% (см. описание к патенту РФ №2163647, МПК7 C22F 3/02, B22D 27/00, опубл. 27.02.2001 г.).

Известный способ позволяет получить измельченную структуру расплава, однако не позволяет выборочно влиять на изменение этой структуры.

Известен способ обработки жаропрочных сплавов на основе никеля и кобальта в электромагнитных полях малой мощности радиочастотного диапазона, позволяющий управлять ликвацией кристаллизующихся сплавов и оказывать влияние на структуру и свойства материала или изделия (см. Зарембо В.И. и др. «Изменение ликвации жаропрочных сплавов на основе никеля и кобальта при кристаллизации в слабых электромагнитных полях в токовом режиме». Химическая промышленность, т.80, 2003 г., №9, с.30-37).

Данный способ не позволяет установить зависимость структурных изменений от частот воздействующего на кристаллизующиеся сплавы электромагнитного поля во взаимосвязи с частотами собственных колебаний атомов химических элементов, входящих в состав сплава.

Задачей заявляемого изобретения является получение различных сплавов со структурой, определяющей заданные свойства, посредством выбора частот электромагнитного поля, воздействующего на расплав.

Указанный технический результат достигается тем, что в способе обработки расплавов сплавов, включающем расплавление сплава в нагревательном устройстве и кристаллизацию расплава в форме, воздействие на расплав, находящийся в жидкой фазе и/или в стадии кристаллизации, осуществляют переменным электромагнитным полем с резонансной частотой, по отношению к которой расчетная частота собственных колебаний атомов, по меньшей мере, одного химического элемента, входящего в состав сплава, является кратной.

При воздействии переменных электромагнитных полей на сплавы и кристаллические вещества частота и направленность воздействия выборочно влияют на изменение структуры, особенно в стадии фазовых превращений. Механизм такого воздействия объясняется следующим образом.

Атомы всех химических элементов в твердой фазе имеют собственную частоту колебаний. При фазовом переходе из твердого состояния в жидкое состояние в жидкости сохраняется ближний порядок (см. Физическая энциклопедия. Т.1, М.: «Советская энциклопедия», 1988, с.556). Кроме того, атомы при взаимодействии с соседями в конденсированной среде, к которой относятся жидкое и твердое состояния, всегда приобретают электрический заряд, превращаясь в положительно или отрицательно заряженные ионы (см. Физическая энциклопедия. Т.1, М.: «Советская энциклопедия», 1988, с.694, 695). Таким образом, атомы в конденсированной среде можно рассматривать как механические микроосцилляторы, имеющие определенную массу и электрический заряд.

При воздействии на конденсированную среду переменным электромагнитным полем колеблющиеся электроны взаимодействуют с ионами, образуя механическую колебательную систему. Если частота собственных колебаний атома химического элемента кратна частоте воздействующего переменного электромагнитного поля, происходит резонанс на гармониках (см. Физическая энциклопедия. Т.4, М.: Научное издательство «Большая Российская энциклопедия», 1994, с.308,309). Кинетическая энергия резонирующих атомов повышается, в результате чего возрастает их подвижность в растворе, что приводит к флуктуациям, т.е. к отклонению их распределения в растворе от нормального, и к скоплению в компактные группы (см. Физическая энциклопедия. Т.5, М.: Научное издательство «Большая Российская энциклопедия», 1995, с.326).

При экспериментальном осуществлении способа проводили эксперименты по воздействию переменных электромагнитных полей на кристаллизацию расплава силумина марки АК12 следующего химического состава, вес.%:

Si - 10,8; Mg - 0,08; Cu - 0,23; Fe - 0,6;

Mn - 0,07; Zn - 0,12; Ni - 0,01; Ti - 0,05;

Pb - 0,017; остальное - Al.

Расчетным путем, используя модель Эйнштейна для определения теплоемкости кристаллов (см. Киттель Ч. Элементарная физика твердого тела. М.: Наука, 1965, с.57-59), получили собственную частоту колебаний для атомов кремния, равную 2,44·1011 Гц, а для атомов алюминия - 4,57·1011 Гц.

Силумин плавили в стальном с внутренней стороны футерованном шамотом тигле в муфельной печи. Расплав доводили до температуры 790-840°С.

Образцы для исследования с диаметром рабочей части 9 мм и длиной рабочей части 50 мм заливали в песчано-глинистые сухие формы. По длине образца с одного конца был расположен стояк с литниковой чашей, с другого находился выпор для определения заполнения формы металлом. По разделу формы в торце полости, формирующей при заливке разрывной образец, вставляли два алюминиевых электрода, которые подсоединяли к источнику переменного тока заданной частоты. Источником переменного тока служили генераторы, позволяющие получать электромагнитные колебания частотой от 10 кГц до 17,08 МГц. После этого формы заливали расплавом и воздействовали электромагнитным полем в течение 2-4 минут.

После кристаллизации образцы разрезали и проводили металлографические исследования на металлографическом микроскопе Неофот - 2, снабженном цифровой фотокамерой, соединенной с компьютером.

Результаты исследований представлены на фотографиях. Увеличение 500.

Фиг.1 - фотография образца без воздействия электромагнитного поля на расплав;

Фиг.2 - фотография образца с воздействием на расплав электромагнитным полем с частотой 122 кГц;

Фиг.3 - фотография образца с воздействием на расплав электромагнитным полем с частотой 150 кГц;

Фиг.4 - фотография образца с воздействием на расплав электромагнитным полем с частотой 183 кГц;

Фиг.5 - фотография образца с воздействием на расплав электромагнитным полем с частотой 1,22 МГц;

Фиг.6 - фотография образца с воздействием на расплав электромагнитным полем с частотой 1,50 МГц;

Фиг.7 - фотография образца с воздействием на расплав электромагнитным полем с частотой 2,44 МГц;

Фиг.8 - фотография края образца с воздействием на расплав электромагнитным полем с частотой 17,08 МГц;

Фиг.9 - фотография середины образца с воздействием на расплав электромагнитным полем с частотой 17,08 МГц.

На всех микрофотографиях темная фаза - кремний; светлая фаза - раствор кремния в алюминии.

Кремний в силумине кристаллизуется в виде пластин (фиг.1).

При воздействии частотами 122 кГц, и 1,22 МГц, и 2,44 МГц, по отношению к которым собственная частота колебаний атомов кремния (2,44·1011 Гц) является кратной, происходит изменение структуры: дробление зерна (фиг.2, фиг.5), дробление пластин кремния вплоть до образования шариков, расположенных по линиям роста кремниевых пластин (фиг.7).

При воздействии частотами 150 кГц, 183 кГц и 1,50 МГц, по отношению к которым собственная частота колебаний атомов кремния не является кратной, дробления зерен кремния не происходит, структура кремния грубая (фиг.3, фиг.4 и фиг.6).

При воздействии частотой 17,08 МГц, по отношению к которой частота 2,44·1011 Гц также не является кратной, металлографическая картина изменилась. По поверхности образца образовался мелкодисперсный слой толщиной 1,3-1,5 мм (фиг.8), а в центре образца кристаллизация произошла в виде грубой дендритной структуры (фиг.9).

Возможно воздействие на расплав электромагнитного поля с резонансной частотой, по отношению к которой будут одновременно кратными собственные частоты колебаний не одного, а двух (и более) элементов, входящих в состав сплава. Например, по отношению к частоте 365,6 кГц одновременно являются кратными собственная частота колебаний атомов алюминия (4,57·1011 Гц, кратность 1250000) и собственная частота колебаний кремния (2,44·1011 Гц, кратность 667400 с тремя верными значащими цифрами).

При этом относительная погрешность определения кратности составляет в зависимости от величины первой значащей цифры от 0,5 до 0,06% (см. С.П. Пулькин. Вычислительная математика. М.: «Просвещение», 1974. с.30). Конструкция используемого генератора электромагнитных колебаний позволяет настраивать требуемую частоту с точностью до 1,0%, т.е. точность расчета кратности до третьей значащей цифры находится в пределах погрешности измерений частоты используемого генератора.

Таким образом, воздействие на расплав электромагнитным полем с частотой, по отношению к которой собственная частота колебаний атомов элементов, определяющих структуру сплава, является кратной, позволяет получать сплавы с заданными свойствами.

Заявленный способ можно признать удовлетворяющим условиям патентоспособности, новизны и изобретательского уровня, поскольку в области техники не обнаружено технических решений, совпадающих по всем существенным признакам с заявленным способом, и решений, обладающих признаками, отличающими заявленный объект от прототипа.

Похожие патенты RU2344900C2

название год авторы номер документа
СПОСОБ ДИССОЦИАЦИИ ВОДЫ НА ВОДОРОД И КИСЛОРОД И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2009
  • Кавицкий Игорь Моисеевич
  • Кавицкий Сергей Игоревич
  • Прудников Анатолий Петрович
  • Рушаник Борис Авсеевич
  • Теплов Сергей Игоревич
RU2409704C1
СПОСОБ УПРАВЛЕНИЯ ПРОЦЕССОМ КРИСТАЛЛИЗАЦИИ 1998
  • Алехин О.С.
  • Бобров А.П.
  • Герасимов В.И.
  • Зарембо В.И.
  • Некрасов К.В.
  • Саргаев П.М.
  • Суворов К.А.
RU2137572C1
СПОСОБ ВОЗДЕЙСТВИЯ НА РАСПЛАВЛЕННЫЙ МЕТАЛЛ МАГНИТНО-ИМПУЛЬСНЫМ ПОЛЕМ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2005
  • Глущенков Владимир Александрович
  • Егоров Юрий Алексеевич
  • Иголкин Алексей Юрьевич
  • Черников Дмитрий Генадьевич
RU2311989C2
СПОСОБ ВОЗДЕЙСТВИЯ ЭЛЕКТРОМАГНИТНЫМ ИЗЛУЧЕНИЕМ НА РАСПЛАВЛЕННЫЙ МЕТАЛЛ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2000
  • Крымский В.В.
  • Кулаков Б.А.
  • Знаменский Л.Г.
  • Дубровин В.К.
RU2198945C2
СПОСОБ ПОЛУЧЕНИЯ МОДИФИЦИРОВАННЫХ АЛЮМИНИЕВЫХ СПЛАВОВ 2014
  • Архипов Владимир Афанасьевич
  • Даммер Виктор Христианович
  • Ворожцов Александр Борисович
  • Жуков Александр Степанович
  • Ворожцов Сергей Александрович
  • Жуков Илья Александрович
RU2567779C1
СПОСОБ УЛЬТРАЗВУКОВОЙ ОБРАБОТКИ РАСПЛАВА ЗАЭВТЕКТИЧЕСКИХ СИЛУМИНОВ 1999
  • Эскин Г.И.
  • Шапиро Б.М.
  • Сухолинский-Местечкин С.Л.
RU2163647C1
СПОСОБ УПРАВЛЕНИЯ ПРОЦЕССАМИ КРИСТАЛЛИЗАЦИИ И СЕГРЕГАЦИИ В СЛИТКАХ 1993
  • Зверев Б.Ф.
  • Видов С.В.
  • Вишкарев А.Ф.
  • Косырев Л.К.
  • Рябихин Н.П.
  • Виноградов Ю.В.
  • Мостовой А.Б.
RU2095493C1
СПОСОБ ПОЛУЧЕНИЯ СИЛУМИНОВ 2018
  • Кузьмин Михаил Викторович
  • Кондратьев Виктор Викторович
  • Ларионов Леонид Михайлович
  • Клешнин Антон Александрович
RU2683176C1
СПОСОБ ОБРАБОТКИ ЖИДКИХ АЛЮМИНИЯ И СИЛУМИНА НАНОСЕКУНДНЫМИ ЭЛЕКТРОМАГНИТНЫМИ ИМПУЛЬСАМИ (НЭМИ) ДЛЯ ПОВЫШЕНИЯ ИХ ТЕПЛОПРОВОДНОСТИ 2007
  • Ри Эрнст Хосенович
  • Дорофеев Станислав Вячеславович
  • Ри Хосен
  • Кухаренко Елена Борисовна
  • Комков Вячеслав Григорьевич
  • Ширшов Андрей Павлович
RU2347643C1
УСТРОЙСТВО ДЛЯ ФОНОВОГО УЛЬТРАЗВУКОВОГО ВОЗДЕЙСТВИЯ НА ПРОЦЕСС ТВЕРДЕНИЯ МИНЕРАЛЬНОГО ВЯЖУЩЕГО МАТЕРИАЛА 2014
  • Зарембо Виктор Иосифович
RU2562354C1

Иллюстрации к изобретению RU 2 344 900 C2

Реферат патента 2009 года СПОСОБ ОБРАБОТКИ РАСПЛАВОВ СПЛАВОВ

Изобретение относится к металлургии, в частности к способам обработки расплавов сплавов различных материалов. Способ включает расплавление сплава в нагревательном устройстве, кристаллизацию расплава в форме и воздействие на расплав, находящийся в жидкой фазе и/или в стадии кристаллизации, переменным электромагнитным полем. Воздействие на расплав электромагнитным полем осуществляют с резонансной частотой, по отношению к которой расчетная частота собственных колебаний атомов, по меньшей мере, одного химического элемента, входящего в состав сплава, является кратной. Способ позволяет получить различные сплавы со структурой, определяющей заданные свойства. 9 ил.

Формула изобретения RU 2 344 900 C2

Способ обработки расплавов сплавов, включающий расплавление сплава в нагревательном устройстве, кристаллизацию расплава в форме и воздействие на расплав, находящийся в жидкой фазе и/или в стадии кристаллизации, переменным электромагнитным полем, отличающийся тем, что воздействие на расплав электромагнитным полем осуществляют с резонансной частотой, по отношению к которой расчетная частота собственных колебаний атомов, по меньшей мере, одного химического элемента, входящего в состав сплава, является кратной.

Документы, цитированные в отчете о поиске Патент 2009 года RU2344900C2

ЗАРЕМБО В.И
и др
Изменение ликвации жаропрочных сплавов на основе никеля и кобальта при кристаллизации в слабых электромагнитных полях в токовом режиме
- Химическая промышленность, т.80, №9, 2003, с.30-37
СПОСОБ УПРАВЛЕНИЯ ПРОЦЕССОМ КРИСТАЛЛИЗАЦИИ 1998
  • Алехин О.С.
  • Бобров А.П.
  • Герасимов В.И.
  • Зарембо В.И.
  • Некрасов К.В.
  • Саргаев П.М.
  • Суворов К.А.
RU2137572C1
СИСТЕМА УПРАВЛЕНИЯ ПРОЦЕССОМ КРИСТАЛЛИЗАЦИИ 2001
  • Герасимов В.И.
  • Некрасов К.В.
  • Алехин О.С.
  • Зарембо В.И.
  • Суворов К.А.
  • Бобров А.П.
  • Саргаев П.М.
  • Фейгельман Б.И.
RU2193946C1
СПОСОБ УЛЬТРАЗВУКОВОЙ ОБРАБОТКИ РАСПЛАВА ЗАЭВТЕКТИЧЕСКИХ СИЛУМИНОВ 1999
  • Эскин Г.И.
  • Шапиро Б.М.
  • Сухолинский-Местечкин С.Л.
RU2163647C1
СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ В УСЛОВИЯХ РЕЗОНАНСНЫХ КОЛЕБАНИЙ СТРУКТУРНЫХ ЧАСТИЦ МАТЕРИАЛА 2002
  • Аносов Ю.М.
  • Аносов М.Ю.
  • Филимонов А.П.
RU2246378C2
US 4530404 А, 23.07.1985.

RU 2 344 900 C2

Авторы

Кавицкий Игорь Моисеевич

Кавицкий Сергей Игоревич

Рушаник Борис Авсеевич

Даты

2009-01-27Публикация

2006-12-21Подача