СПОСОБ ОБРАБОТКИ ЖИДКИХ АЛЮМИНИЯ И СИЛУМИНА НАНОСЕКУНДНЫМИ ЭЛЕКТРОМАГНИТНЫМИ ИМПУЛЬСАМИ (НЭМИ) ДЛЯ ПОВЫШЕНИЯ ИХ ТЕПЛОПРОВОДНОСТИ Российский патент 2009 года по МПК B22D27/20 C22F3/02 

Описание патента на изобретение RU2347643C1

Изобретение относится к металлургии и литейному производству и может быть использовано для получения отливок, требующих высокой теплопроводности.

Известны способы обработки жидких алюминия и силумина, заключающиеся в удалении газов из алюминиевых расплавов методами вакуумирования, обработки их постоянным электрическим током, вакуумного рафинирования и др. [1], позволяющие повысить их теплопроводность. Недостатками этих способов являются большая энергоемкость и необходимость дорогостоящего оборудования.

Существует также способ обработки жидких алюминия и силумина, заключающийся в применении защитно-восстановительных флюсов, снижающих газонасыщенность расплава, удаляющих вредные примеси, уменьшающих безвозвратные потери металла.

Недостатками являются увеличение продолжительности процесса плавки и ухудшение санитарно-гигиенических условий труда в литейных цехах.

Все вышеперечисленные способы обработки жидких алюминия и алюминиевых сплавов (силуминов) не позволяют увеличивать теплопроводность в 1,5 и более раз.

В качестве наиболее близкого аналога по совокупности существенных признаков и назначению принят способ воздействия электромагнитным излучением на расплавленный металл и установка для его осуществления, раскрытый в RU 2198945 С2 [2].

Суть способа согласно изобретению заключается в облучении расплава наносекундными электромагнитными импульсами для повышения жидкотекучести по спиральной пробе при 650°С со 170 до 290 мм, относительного удлинения с 0,5-0,6% в необработанном образце до 1,0-1,2% в обработанном. При этом в затвердевшем металле изменяется форма зерна кремния в эвтектике с иглообразной до почти сферической в обработанном образце. На 15% увеличивается прочность на разрыв.

Недостаток этого способа заключается в том, что в техническом результате не предусмотрено повышение теплопроводности алюминия и его сплавов (силуминов), а рассматривается только вопрос о повышении жидкотекучести и механические свойства сплава марки АК 7 при облучении расплава НЭМИ.

Характеристики оборудования, используемого для обработки расплава НЭМИ, и методика определения теплопроводности алюминия и силуминов:

1. Генератор НЭМИ:

- полярность импульсов - положительная;

- амплитуда импульсов на нагрузке - 50 Ом - 6000 В;

- длительность импульсов на половинном уровне - 0,5 нс;

- максимальная допустимая частота следования генерируемых импульсов - 1 кГц;

- задержка выходного импульса относительно фронта импульса запуска - 120 нс;

- максимальный ток, потребляемый генератором во всем диапазоне питающих напряжений, не более 1,7 А при частоте 61 кГц.

2. Измерение теплопроводности на установке, изготовленной НПО «Дальстандарт», основанное на сравнении прохождения теплового потока через эталонный и исследуемый образцы; в качестве эталона использовался образец из нержавеющей стали 12Х18Н10Т диаметром 0,03 м и высотой 0,01 м; температура «холодного» и «горячего» блоков поддерживалась постоянной с погрешностью ±0,05°С с помощью термостатов; для измерения перепада температур на эталоне и «образце» использовались дифференциальные медьконстантановые термопары; регистрирующим прибором служил микровольт-микроамперметр Ф-116; с учетом утечки тепла на боковые теплопотери и потери, связанные с различными размерами образцов и нагревателей, а также с учетом погрешности измерения размеров образцов суммарная погрешность составила δ=10-15%.

Примеры реализации способа

Пример 1.

Нагревают алюминий (99,999% Al) до температуры 900°С, после стабилизации температуры обрабатывают жидкую фазу НЭМИ в течение 5, 10, 15 и 20 минут. После отключения генератора жидкий алюминий охлаждают со скоростью, реальной для данного процесса (20-100°С/мин). Теплопроводность алюминия измерялась при комнатной температуре (+20°С), фиг.1.

Как видно, максимальная теплопроводность наблюдается при обработке жидкой фазы алюминия в течение 10 минут по сравнению с теплопроводностью необработанного алюминия и она возрастает в 1,75 раз. При этом твердость (НВ) также повышается.

Пример 2.

Химический состав силуминов, применяемых при реализации предлагаемого способа.

Таблица 1.Марка сплаваМассовая доля основных компонентов, %MgSiCuMnОстальное AlАЛ 9 (АК 7 ч)0,2-0,46,0-8,0-93,8-91,6АК70,2-0,56,0-8,0-0,2-0,693,6-90,5А 390-17,0-18,04,0-78,0-79,0

Нагревают силумины до температуры 900°С, после стабилизации температуры обрабатывают жидкую фазу НЭМИ в течение 5, 10, 15 и 20 минут. После отключения генератора жидкий силумин охлаждают со скоростью, реальной для данного процесса (20-100°С/мин). Теплопроводность силуминов измерялась при комнатной температуре (+20°С), фиг.2, 3, 4.

Установлено, что:

- максимальная теплопроводность сплава А 390 наблюдается при продолжительности обработки жидкой фазы, равной 10 минутам; при этом теплопроводность возрастает соответственно в 1,3 раза; твердость также возрастает под воздействием НЭМИ;

- максимальная теплопроводность силуминов АЛ 9 и АК 7 наблюдается при обработке НЭМИ в течение 15 минут; теплопроводность силуминов возрастает в сплаве АЛ 9 в 1,5 раз, а в силумине АК 7 - более 2,0 раз; при этом также возрастают твердость, плотность и износостойкость;

- максимальное диспергирование первичного кремния и эвтектики наблюдается при продолжительности обработки жидкой фазы, соответствующей максимальным значениям теплопроводности.

Источники информации

1. В.И.Муравьев, В.И.Якимов, Хосен Ри и др. Изготовление литых заготовок в авиастроении. - Владивосток: Дальнаука. 2003. С.111-119.

2. Патент RU 2198945 С2 Способ воздействия электромагнитным излучением на расплавленный металл и установка для его осуществления. 27.11.2000. Крымский В.В., Кулаков Б.А., Знаменский А.Г., Дубровин В.К.

3. Ри Хосен, Баранов Е.М., Шпорт В.И. и др. Свойства алюминиевых сплавов (силуминов) в жидком и твердом состояниях. - Владивосток: Дальнаука, 2002. 141 с.

Похожие патенты RU2347643C1

название год авторы номер документа
СПОСОБ ОБРАБОТКИ АЛЮМИНИЕВЫХ СПЛАВОВ 2013
  • Якимов Виктор Иванович
  • Ри Хосен
  • Ри Эрнст Хосенович
  • Князев Григорий Андреевич
RU2546948C1
СПОСОБ ОБРАБОТКИ РАСПЛАВА СЕРОГО ЧУГУНА НАНОСЕКУНДНЫМИ ЭЛЕКТРОМАГНИТНЫМИ ИМПУЛЬСАМИ (НЭМИ) ДЛЯ ПОВЫШЕНИЯ ТЕПЛОПРОВОДНОСТИ, КОРРОЗИОННОЙ СТОЙКОСТИ И ЖАРОСТОЙКОСТИ 2007
  • Ри Эрнст Хосенович
  • Кухаренко Елена Борисовна
  • Ри Хосен
  • Дорофеев Станислав Вячеславович
  • Ширшов Андрей Павлович
  • Комков Вячеслав Григорьевич
RU2354496C2
Способ обработки расплава чугуна наносекундными электромагнитными импульсами (НЭМИ) 2016
  • Ри Хосен
  • Ермаков Михаил Александрович
  • Ри Эрнст Хосенович
  • Химухин Сергей Николаевич
  • Богачев Анатолий Петрович
RU2623390C1
СПОСОБ ОБРАБОТКИ РАСПЛАВА МЕДИ И ЕЕ СПЛАВОВ НАНОСЕКУНДНЫМИ ЭЛЕКТРОМАГНИТНЫМИ ИМПУЛЬСАМИ НЭМИ ДЛЯ ПОВЫШЕНИЯ ИХ ТЕПЛОПРОВОДНОСТИ 2005
  • Ри Эрнст Хосенович
  • Ри Хосен
  • Белых Вячеслав Вячеславович
RU2287605C1
СПОСОБ ОБРАБОТКИ ЖИДКОЙ МЕДИ НАНОСЕКУНДНЫМИ ЭЛЕКТРОМАГНИТНЫМИ ИМПУЛЬСАМИ (НЭМИ) ДЛЯ ПОВЫШЕНИЯ ЕЕ ЖАРО- И КОРРОЗИОННОСТОЙКОСТИ 2007
  • Ри Эрнст Хосенович
  • Дорофеев Станислав Вячеславович
  • Ри Хосен
  • Кухаренко Елена Борисовна
  • Комков Вячеслав Григорьевич
  • Ширшов Андрей Павлович
RU2355511C2
СПОСОБ ПРИГОТОВЛЕНИЯ ЛИГАТУРЫ АЛЮМИНИЙ - ТУГОПЛАВКИЙ МЕТАЛЛ ДЛЯ ВЫПЛАВКИ ЛИТЕЙНЫХ АЛЮМИНИЕВЫХ СПЛАВОВ 2006
  • Знаменский Леонид Геннадьевич
  • Ивочкина Ольга Викторовна
  • Варламов Алексей Сергеевич
RU2323990C1
СПОСОБ ПРИГОТОВЛЕНИЯ ЛИГАТУРЫ АЛЮМИНИЙ-ТУГОПЛАВКИЙ МЕТАЛЛ 2003
  • Знаменский Л.Г.
RU2232827C1
СПОСОБ ВОЗДЕЙСТВИЯ ЭЛЕКТРОМАГНИТНЫМ ИЗЛУЧЕНИЕМ НА РАСПЛАВЛЕННЫЙ МЕТАЛЛ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2000
  • Крымский В.В.
  • Кулаков Б.А.
  • Знаменский Л.Г.
  • Дубровин В.К.
RU2198945C2
СПОСОБ ПОЛУЧЕНИЯ ОЛОВА ИЗ КАССИТЕРИТОВОГО КОНЦЕНТРАТА 2013
  • Ри Хосен
  • Гостищев Виктор Владимирович
  • Ри Эрнст Хосенович
  • Комков Вячеслав Григорьевич
RU2528297C1
Способ обработки поверхности доэвтектического силумина 2023
  • Шляров Виталий Владиславович
  • Загуляев Дмитрий Валерьевич
  • Иванов Юрий Федорович
  • Шлярова Юлия Андреевна
RU2806354C1

Иллюстрации к изобретению RU 2 347 643 C1

Реферат патента 2009 года СПОСОБ ОБРАБОТКИ ЖИДКИХ АЛЮМИНИЯ И СИЛУМИНА НАНОСЕКУНДНЫМИ ЭЛЕКТРОМАГНИТНЫМИ ИМПУЛЬСАМИ (НЭМИ) ДЛЯ ПОВЫШЕНИЯ ИХ ТЕПЛОПРОВОДНОСТИ

Изобретение относится к металлургии. Расплав нагревают до температуры 900°С. После стабилизации температуры расплав обрабатывают наносекундными электромагнитными импульсами в течение 10-15 минут, затем охлаждают до комнатной температуры. Достигается повышение теплопроводности алюминия и силумина. 4 ил., 1 табл.

Формула изобретения RU 2 347 643 C1

Способ обработки жидких алюминия и силумина, включающий обработку расплавов наносекундными электромагнитными импульсами, отличающийся тем, что для повышения теплопроводности алюминия и силумина их расплавы обрабатывают при температуре 900°С в течение 10-15 мин.

Документы, цитированные в отчете о поиске Патент 2009 года RU2347643C1

КУРДЮМОВ А.В
и др., Литейное производство цветных и редких металлов, М., Металлургия, 1982, с.231-234
RU 2003711 С1, 30.11.1993
Способ дегазации металлов и сплавов 1959
  • Горина А.П.
  • Гинберг А.Э-М.
SU134954A1
Способ обработки расплава металла иуСТРОйСТВО для ЕгО ОСущЕСТВлЕНия 1979
  • Точилов Яков Яковлевич
SU836132A1

RU 2 347 643 C1

Авторы

Ри Эрнст Хосенович

Дорофеев Станислав Вячеславович

Ри Хосен

Кухаренко Елена Борисовна

Комков Вячеслав Григорьевич

Ширшов Андрей Павлович

Даты

2009-02-27Публикация

2007-06-27Подача