УСТРОЙСТВО И СПОСОБ ОПТИЧЕСКОГО СКАНИРОВАНИЯ СРЕД, ОБЪЕКТОВ ИЛИ ПОВЕРХНОСТЕЙ Российский патент 2009 года по МПК G02B26/10 

Описание патента на изобретение RU2346314C2

Изобретение относится к устройству и способу оптического сканирования сред, объектов или поверхностей с помощью отклоняющего зеркала для отклонения светового излучения, причем отклоняющее зеркало соединено с приводом.

Подобные устройства используются, в частности, для сканирования поверхностей, например, чтобы картировать их.

При дистанционном обнаружении или дистанционном установлении местонахождения в воздушном пространстве или атмосфере над землей газов, в частности углеводородов, таких как метан, анализируют свет, идущий от земли или атмосферы вследствие излучения, или рассеяния, или отражения света из источника света. Для этого световое излучение фокусируют с помощью телескопа на детектор. Речь может идти о световом излучении в ультрафиолетовой, видимой или инфракрасной области спектра.

При необходимости достижения высокой чувствительности и/или если количество света, излучаемое атмосферой или поверхностью, относительно мало, то следует использовать телескопы или системы приема с большими оптическими апертурами, диаметр которых может составлять до 10 см.

Для возможности быстрого сканирования поверхности следует либо соответственно быстро перемещать систему приема, либо непрерывно заново ориентировать поле зрения телескопа посредством соответствующего устройства.

Для систем приема или телескопов с большими оптическими апертурами перемещение системы приема или телескопа не рассматривается из-за конструктивной величины и возникающих вследствие этого проблем с приводом.

У систем приема с малыми оптическими апертурами, т.е. диаметрами менее 1 см, известно использование отклоняющих зеркал для отклонения светового излучения между поверхностью или объектом и системой приема. Отклоняющие зеркала приводятся, например, пьезоэлементами или гальвосканерами. Для систем приема с большими оптическими апертурами использование таких приводов неприемлемо или слишком сложно.

Далее из практики известна отклоняющая система с двумя отклоняющими зеркалами, причем первое отклоняющее зеркало отклоняет световой луч на 90°. Посредством второго отклоняющего зеркала, которое снова отклоняет световой луч, поверхность можно просканировать относительно быстро. Правда, использование двух отклоняющих зеркал является конструктивно сложным и дорогостоящим делом.

Также известно отклоняющее зеркало с карданным приводом. Здесь отклоняющее зеркало быстро перемещается вокруг карданных осей. Недостатком являются возникающие при этом очень быстрые ускорения. Быстрое реверсирование движения создает очень быструю механическую нагрузку всех компонентов и требует очень мощных приводов для отклоняющих зеркал, для достижения необходимых сильных ускорений. Кроме того, сильные ускорения вводят в измерительную систему вибрации, которые могут оказывать негативное воздействие.

Задача изобретения состоит, таким образом, в создании конструктивно простого устройства описанного выше типа, с помощью которого можно было бы осуществлять быстрое сканирование больших поверхностей.

Эта задача решается посредством устройства для оптического сканирования сред, объектов или поверхностей с признаками п.1 формулы. Согласно изобретению отклоняющее зеркало выполнено с возможностью вращения, причем нормаль к зеркалу наклонена к оси вращения. Ось вращения проходит перпендикулярно нормали к зеркалу. Во время вращения отклоняющее зеркало совершает качательное движение. Световой луч описывает на целевой поверхности эллипс. Следовательно, скорость сканирования может быть очень большой. Поскольку привод необязательно должен прикладывать большие силы ускорения для вращательного движения, можно использовать недорогой привод малой мощности.

Преимущественно отклоняющее зеркало отклоняет световое излучение на систему приема, содержащую телескоп и детектор. Поскольку могут использоваться телескопы с большой апертурой, устройство особенно пригодно в качестве составной части оптической системы дистанционного обнаружения или дистанционного установления местонахождения газов, в частности углеводородов, таких как метан или природный газ. Для подобных применений предпочтительно, если световое излучение происходит из источника лазерного излучения.

В рамках изобретения световое излучение может быть также солнечным светом. Речь может идти также о световом излучении, например тепловом излучении, испускаемом объектами или поверхностями.

Предпочтительным образом устройство в качестве составной части оптической системы дистанционного обнаружения или дистанционного установления местонахождения газов снабжено навигационным устройством и установлено в летательном аппарате. Навигационное устройство может представлять собой известную систему глобального позиционирования (Global Positioning System) (GPS).

Одно предпочтительное усовершенствование изобретения состоит в том, что отклоняющее зеркало находится в установленной оправе.

Угол между нормалью к зеркалу и осью вращения, т.е. угол наклона, в простейшем случае задается постоянным. Однако предпочтительно, если угол между нормалью к зеркалу и осью вращения можно регулировать или выбирать произвольным. Преимущественно для регулирования используют второй привод, выполненный преимущественно с возможностью управления.

За счет наклона нормали к зеркалу к оси вращения при вращательном движении создаются динамические дебалансные моменты, которые могут приводить к сильным вибрациям. Поэтому изобретение предлагает выполнить зеркало и оправу так, чтобы ось вращения совпадала с главной осью инерции отклоняющего зеркала вместе с оправой.

В отличие от этого в рамках изобретения предложено, что отклоняющее зеркало снабжено, по меньшей мере, одним элементом балансировочной массы таким образом, что главная ось инерции отклоняющего зеркала вместе с элементом балансировочной массы совпадает с осью вращения. Положение элемента балансировочной массы по отношению к отклоняющему зеркалу можно регулировать.

Один предпочтительный вариант осуществления изобретения отличается тем, что отклоняющее зеркало установлено с возможностью наклона вокруг оси к оси вращения и что элемент балансировочной массы установлен с возможностью наклона к отклоняющему зеркалу вокруг той же оси преимущественно с помощью общего привода.

Преимущественно элемент балансировочной массы выполнен в виде кольца, концентрично окружающего отклоняющее зеркало. В качестве кольца может быть использовано, например, металлическое кольцо. Если ось вращения совпадает с нормалью к зеркалу, то отклоняющее зеркало и кольцо находятся в одной плоскости. Если же отклоняющее зеркало наклонено вокруг оси перпендикулярно нормали к зеркалу, то кольцо наклоняется вокруг той же оси в противоположном направлении. При соответствующем расчете металлического кольца и регулировании можно полностью компенсировать динамический дебаланс наклоненного отклоняющего зеркала. Ось наклона проводят преимущественно через центр тяжести зеркала вместе с оправой во избежание статических дебалансов.

Для решения поставленной задачи предусмотрен способ оптического сканирования сред, объектов или поверхностей с помощью отклоняющего зеркала для отклонения светового излучения, причем отклоняющее зеркало соединено с приводом, отличающийся тем, что отклоняющее зеркало вращается вокруг оси вращения, причем нормаль к зеркалу наклонена к оси вращения, и при этом одновременно отклоняющее зеркало направляют по среде, объекту или поверхности. На вращательное движение накладывают, тем самым, второе движение. Если следует сканировать поверхность, например трассу газопровода, то второе движение в основном параллельно поверхности.

В качестве альтернативы возможно вращение отклоняющего зеркала вокруг оси вращения, причем нормаль к зеркалу наклонена к оси вращения и причем в то же время угол наклона непрерывно изменяют. Отклоняющее зеркало вращается равномерно и быстро, тогда как непрерывное движение наклона происходит медленно. Таким образом, для высоких скоростей сканирования требуются приводы относительно малой мощности.

Способ согласно изобретению может особенно предпочтительно применяться в способе контроля за подземными газопроводами посредством летательного аппарата. Таким образом, утечки в трубопроводной сети можно быстро обнаружить путем облета трассы соответствующим летательным аппаратом, в частности вертолетом.

Изобретение поясняется ниже с помощью примера его осуществления.

На чертежах изображают:

фиг.1: схематичный вид устройства согласно изобретению;

фиг.2: устройство согласно изобретению в разрезе при виде сбоку, причем отклоняющее зеркало наклонено;

фиг.3: устройство согласно изобретению при виде спереди;

фиг.4: устройство согласно изобретению в разрезе при виде сбоку, причем отклоняющее зеркало не наклонено.

Изображенное на фиг.1-4 устройство связано с навигационным устройством (не показано) и является составной частью оптической системы дистанционного обнаружения углеводородов. Система дистанционного обнаружения установлена в вертолете и используется для дистанционного установления местонахождения углеводородов в атмосфере, в частности метана или природного газа, для детектирования утечек в подземных газопроводах. Источник лазерного излучения (не показан) испускает лазерное излучение, которое распределяется по сканируемой поверхности или по земле. Вертолет летит по трассе газопровода со скоростью примерно 80-100 км/ч.

На пути лазерного излучения и отраженного света находится вращающееся отклоняющее зеркало 1, выполненное плоским. Отклоняющее зеркало 1 наклонено вокруг оси 3 наклона, проходящей перпендикулярно нормали 7 к зеркалу, с помощью управляемого привода (не показан). Поскольку нормаль 7 к зеркалу является перпендикуляром к поверхности зеркала, ось 5 вращения расположена, таким образом, под углом к нормали 7 к зеркалу. Из фиг.4 видно, что отклоняющее зеркало 1 установлено в оправе 8 с помощью подшипников.

Отклоняющее зеркало 1 вращается вокруг оси 5 вращения равномерно и относительно быстро. Скорость вращения составляет, например, 300 об/мин. Угол между нормалью к зеркалу и осью вращения может быть выбран произвольным и может составлять, например, 7°.

Световое излучение 6 отклоняют в основном на 90°. Отклоняют как излученное световое излучение, так и отраженное. За счет регулирования угла между нормалью к зеркалу и осью вращения можно привести ширину сканируемой поверхности в соответствие с требованием вследствие топографии целевой поверхности. Луч движется по эллиптической спиральной траектории. За счет наложения сканирования на движение полета измерительные точки лежат на циклоиде.

Отраженный от земли или атмосферы свет собирают с помощью телескопа 9, имеющего большую оптическую апертуру, и фокусируют на детектор 10. Осуществляют излучение лазерного луча коаксиально оси телескопа. При утечке содержание метана в атмосфере над землей повышается, поскольку природный газ состоит главным образом из метана. Известно, что метан абсорбирует при определенных длинах волн излученный свет, так что, оценивая отраженный свет, можно определить концентрацию метана в атмосфере.

Необходимо принять подходящие меры для компенсации дебалансов при вращении. Поэтому отклоняющее зеркало 1 концентрично окружено элементом 2 балансировочной массы, имеющим главную ось 4 инерции. Элемент 2 балансировочной массы выполнен в виде металлического кольца. Если ось 5 вращения совпадает с нормалью 7 к зеркалу, то отклоняющее зеркало 1 и металлическое кольцо 2 находятся в одной плоскости. Если же отклоняющее зеркало 1 наклонено вокруг оси 3 наклона перпендикулярно нормали к зеркалу, то металлическое кольцо 2 наклоняется вокруг той же оси 3 в противоположном направлении. Главная ось инерции отклоняющего зеркала 1 соответствует нормали 7 к зеркалу 1, поскольку отклоняющее зеркало 1 выполнено вращательно-симметричным. При соответствующем расчете металлического кольца 2 и регулировании можно полностью компенсировать динамический дебаланс наклоненного отклоняющего зеркала 1.

В рамках изобретения отклоняющее зеркало 1 может при вращении совершать непрерывное движение наклона вокруг оси 3 перпендикулярно нормали 7, так что угол между осью 5 вращения и нормалью 7 к зеркалу непрерывно изменяется.

В рамках изобретения устройство может быть вполне модифицировано. Так, отклоняющее зеркало и оправа могут быть выполнены так, чтобы ось 5 вращения в основном совпадала с главной осью инерции отклоняющего зеркала 1 вместе с оправой 8.

Похожие патенты RU2346314C2

название год авторы номер документа
МНОГОФУНКЦИОНАЛЬНАЯ ОПТИКО-ЛОКАЦИОННАЯ СИСТЕМА 2008
  • Прилипко Алекандр Яковлевич
  • Павлов Николай Ильич
  • Чернопятов Владимир Яковлевич
RU2372628C1
БЛОК ДАТЧИКА ДЛЯ КОНТРОЛЯ ПОВЕРХНОСТИ ОБЪЕКТА И СПОСОБ ДЛЯ ОСУЩЕСТВЛЕНИЯ ЭТОГО КОНТРОЛЯ 1998
  • Воллманн Христиан
  • Венерт Лутц
  • Ихлефельд Иоахим
  • Гриесер Ральф
RU2186372C2
Способ и устройство для направленного центрирования оправленных оптических линз и узлов 1977
  • Хопфе Хельмут
SU922673A1
УСТРОЙСТВО ДЛЯ ФОРМИРОВАНИЯ ЛАЗЕРНОГО ПУЧКА 1994
  • Бородин В.Г.
  • Красов С.В.
  • Потапов С.Л.
  • Чарухчев А.В.
  • Веснин В.Н.
RU2083039C1
Способ определения радиусов кривизны сферических поверхностей и устройство для его осуществления 1988
  • Парняков Евгений Серафимович
  • Парняков Юрий Серафимович
SU1562691A1
УСТРОЙСТВО ЮСТИРОВКИ ДВУХЗЕРКАЛЬНОЙ ЦЕНТРИРОВАННОЙ ОПТИЧЕСКОЙ СИСТЕМЫ 2011
  • Балоев Виллен Арнольдович
  • Иванов Владимир Петрович
  • Ларионов Николай Петрович
  • Лукин Анатолий Васильевич
  • Мельников Андрей Николаевич
  • Скочилов Александр Фридрихович
  • Ураскин Андрей Михайлович
  • Чугунов Юрий Петрович
RU2467286C1
УСТРОЙСТВО ДЛЯ ДИСТАНЦИОННОГО ПОЛУЧЕНИЯ ИЗОБРАЖЕНИЙ В ТЕПЛОВОЙ ОБЛАСТИ СПЕКТРА 1998
  • Акимов Н.П.
  • Гектин Ю.М.
  • Кисляков Ю.В.
  • Осипов П.А.
  • Смелянский М.Б.
RU2150725C1
СПОСОБ ЮСТИРОВКИ ДВУХЗЕРКАЛЬНЫХ ЦЕНТРИРОВАННЫХ ОПТИЧЕСКИХ СИСТЕМ 2007
  • Иванов Владимир Петрович
  • Ларионов Николай Петрович
  • Лукин Анатолий Васильевич
  • Нюшкин Александр Алексеевич
RU2375676C2
СПОСОБ СОЗДАНИЯ ОПТИЧЕСКИХ ЭФФЕКТОВ И УСТРОЙСТВО "ЛАЗЕРНЫЙ КАЛЕЙДОСКОП" ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1996
  • Лобаневский Александр Леонидович[By]
  • Тарун Александр Петрович[By]
RU2095682C1
Оптическая система дистанционной передачи энергии на базе мощных волоконных лазеров 2021
  • Корнилов Владимир Александрович
  • Тугаенко Вячеслав Юрьевич
RU2788422C1

Иллюстрации к изобретению RU 2 346 314 C2

Реферат патента 2009 года УСТРОЙСТВО И СПОСОБ ОПТИЧЕСКОГО СКАНИРОВАНИЯ СРЕД, ОБЪЕКТОВ ИЛИ ПОВЕРХНОСТЕЙ

Изобретение относится к устройству и способу оптического сканирования сред, объектов или поверхностей и может быть использовано в оптических системах дистанционного обнаружения или дистанционного установления местонахождения газов, в частности углеводородов, в атмосфере. Устройство для оптического сканирования сред или объектов содержит отклоняющее зеркало (1) для отклонения светового излучения (6), соединенное с приводом. Отклоняющее зеркало (1) выполнено с возможностью вращения, причем нормаль (7) к зеркалу наклонена к оси (5) вращения. Отклоняющее зеркало (1) установлено в оправе (8) посредством подшипника и снабжено по меньшей мере одним элементом (2) балансировочной массы таким образом, что ось (5) вращения совпадает с главной осью (4) инерции средства (1) отклоняющего зеркала вместе с оправой (8). Цель изобретения - обеспечение быстрого сканирования с большой апертурой. 2 н. и 15 з.п. ф-лы, 4 ил.

Формула изобретения RU 2 346 314 C2

1. Устройство для оптического сканирования сред, объектов или поверхностей, содержащее средство (1) отклоняющего зеркала, имеющее отклоняющую поверхность, выполненную с возможностью отклонения пучков света, падающих на указанную поверхность и нормаль, проходящую под прямым углом к указанной отклоняющей поверхности, средство привода, соединенное с указанным средством (1) отклоняющего зеркала для вращения указанного средства (1) отклоняющего зеркала вокруг оси вращения, причем нормаль к указанной поверхности наклонена под углом относительно оси (5) вращения, причем указанное средство (1) отклоняющего зеркала установлено в оправе (8) посредством подшипников и снабжено по меньшей мере одним элементом (2) балансировочной массы, таким образом, что ось (5) вращения совпадает с главной осью (4) инерции средства (1) отклоняющего зеркала вместе с оправой (8).2. Устройство по п.1, отличающееся тем, что средство (1) отклоняющего зеркала выполнено с возможностью отклонения светового излучения на систему приема, которая содержит телескоп (9) и детектор (10).3. Устройство по п.1, отличающееся тем, что световое излучение испускается из источника лазерного излучения.4. Устройство по п.1, отличающееся тем, что падающий свет представляет собой солнечный свет.5. Устройство по п.1, отличающееся тем, что падающий свет испускается объектами или поверхностями.6. Устройство по п.1, отличающееся тем, что угол между осью (5) вращения и нормалью (7) к средству отклоняющего зеркала может регулироваться.7. Устройство по п.6, отличающееся тем, что дополнительно предусмотрен второй привод для регулирования угла между осью (5) вращения и нормалью (7) к средству отклоняющего зеркала.8. Устройство по п.1, отличающееся тем, что положение элемента (2) балансировочной массы по отношению к средству (1) отклоняющего зеркала можно регулировать.9. Устройство по п.8, отличающееся тем, что средство (1) отклоняющего зеркала может поворачиваться вокруг оси (3) наклона, перпендикулярной к оси (5) вращения, при этом элемент (2) балансировочной массы установлен с возможностью поворота к средству (1) отклоняющего зеркала вокруг оси (3) наклона указанного средства (1) отклоняющего зеркала.10. Устройство по п.9, отличающееся тем, что дополнительно содержит общий привод для поворота средства (1) отклоняющего зеркала и элемента (2) балансировочной массы вокруг указанной их общей оси (3) наклона.11. Устройство по п.8, отличающееся тем, что элемент (2) балансировочной массы выполнен в виде кольца, окружающего отклоняющее зеркало (1).12. Устройство по п.1, отличающееся тем, что оно является составной частью оптической системы дистанционного обнаружения газов, в частности углеводородов.13. Устройство по п.12, отличающееся тем, что оно снабжено навигационным устройством и может быть установлено в летательном аппарате.14. Способ оптического сканирования среды с помощью системы сканирования, содержащей отклоняющее зеркало для отклонения пучков света, при этом указанное отклоняющее зеркало соединено с приводом для вращения указанного отклоняющего зеркала вокруг оси вращения, при этом указанное отклоняющее зеркало имеет отклоняющую поверхность, при этом нормаль к указанной поверхности наклонена к оси вращения указанного отклоняющего зеркала, при этом указанную систему сканирования направляют по среде для сканирования указанной среды, причем указанное отклоняющее зеркало вращается вокруг указанной оси вращения, и по меньшей мере один элемент балансировочной массы связан с указанным отклоняющим зеркалом таким образом, что ось вращения совпадает с главной осью инерции отклоняющего зеркала вместе с оправой, поддерживающей указанное отклоняющее зеркало.15. Способ по п.14, отличающийся тем, что указанный способ используется для оптического обнаружения газов, в частности углеводородов.16. Способ по п.14, отличающийся тем, что указанный способ используют для контроля за подземными газопроводами посредством летательного аппарата.17. Способ по п.14, отличающийся тем, что указанный угол наклона непрерывно меняется во время вращения указанного отклоняющего зеркала.

Документы, цитированные в отчете о поиске Патент 2009 года RU2346314C2

Механизм сканирования 1975
  • Добролежа Валерий Иванович
  • Иткис Мирон Федорович
SU553571A1
Сканирующее устройство кругового обзора 1982
  • Ковалев Александр Евгеньевич
  • Борисов Александр Владимирович
  • Федоров Владимир Михайлович
SU1076860A1
СКАНАТОР МОЩНОГО ЛАЗЕРНОГО ИЗЛУЧЕНИЯ 1991
  • Фадеев А.А.
  • Алексеев И.А.
  • Бутаев Ю.Б.
  • Зинченко А.К.
  • Миронов В.В.
RU2032195C1
Разборный с внутренней печью кипятильник 1922
  • Петухов Г.Г.
SU9A1

RU 2 346 314 C2

Авторы

Ульбрихт Маттиас

Виттиг Райнхард

Хоффштедт Андреас

Даты

2009-02-10Публикация

2004-04-02Подача