Изобретение относится к гидрометаллургическим способам переработки сырья цветных металлов, а именно к области выщелачивания и экстракции, и может быть использовано при переработке руд, концентратов, шламов, зол, пылей, кеков и другого вторичного сырья.
Известен способ экстракционного извлечения металлов из руд и концентратов (Скороваров Д.И., Бучихин Е.П., Жилин Ю.С., Бочкарев В.М. "Способ экстракционного извлечения металлов из руд и концентратов". Патент RU 2207387, С2 от 07.04.2001). Способ предназначен для переработки урановых, ториевых, редкоземельных руд и концентратов, а также руд цветных и благородных металлов. Особенностями способа являются сухой помол руды, замес с водой в количестве не более 20% и с концентрированными кислотами, что позволяет сохранить после выщелачивания сыпучую консистенцию твердого, экстракция целевых компонентов из выщелоченного сыпучего твердого раствором известного экстрагента в органическом растворителе. В качестве экстрагента может быть использована смесь растворов 0,2 М ди-(2-этилгексил)фосфорной кислоты и 0,2 М трибутилфосфата, предварительно насыщенная минеральной кислотой. Таким образом, экстрагирование производится из предварительно выщелоченного материала, т.е. стадии выщелачивания и экстракции не совмещаются. Другим недостатком описываемого выше способа является использование концентрированных минеральных кислот и довольно дорогого органического растворителя перхлорэтилена.
Известен способ жидкостной экстракции металлов из водного раствора с помощью микроэмульсии (Bauer Denise, Komornicki Jacques, Tellier Jacques "Process of Liquid-Liquid Extraction of Metals, with the Aid of a Microemulsion, from an aqueous solution". Patent US 4555343, 26.11.1985). Сущность способа состоит в обработке водного раствора солей металлов органической фазой, содержащей экстрагент, органический растворитель, анионное или неионное поверхностно-активное вещество и алифатический спирт. При смешивании водной и органической фаз образуется микроэмульсия в равновесии с водной фазой. Целевые компоненты, перешедшие в микроэмульсию, в дальнейшем реэкстрагируются. В качестве экстрагента предложены ди-(2-этилгексил)дитиофосфат, ди-(2-этилгексил)фосфат, ди-(изобутил-метил)дитиофосфат и другие. Метод предназначен для извлечения никеля, железа, германия, ванадия, платины и родия. При извлечении описанным выше способом в системе присутствуют две жидкие фазы (водная и микроэмульсионная), т.е. извлечение производится в системе "жидкость-жидкость", а не "жидкость-твердое". Таким образом, описанный выше процесс жидкостной экстракции металлов из водного раствора с помощью микроэмульсии требует предварительного извлечения из твердой фазы в раствор, т.е. стадии выщелачивания и экстракции не совмещаются.
Наиболее близким по технической сущности и достигаемому результату к предлагаемому способу выщелачивания металлов из сырья в виде твердой фазы с помощью экстрагентсодержащей прямой микроэмульсии является описанный ранее способ микроэмульсионного выщелачивания меди [Е.В.Юртов, Н.М.Мурашова, А.И.Симонов. Микроэмульсионное выщелачивание меди. // Химическая технология, 2004, №8, С.35-39].
Микроэмульсии - термодинамически устойчивые наноструктурированные среды, в которых капли одной жидкой фазы (водной в случае обратных или органической в случае прямых микроэмульсий) распределены в другой жидкой фазе. Микроэмульсии образуются самопроизвольно в системах, содержащих водную и органическую фазы и одно или несколько поверхностно-активных веществ, способных к образовании микроэмульсий, например в системах вода - додекан - пентанол додецилсульфат натрия или вода - изооктан - бис-(2-этилгексил)сульфосукцинат натрия [Микроэмульсии: структура и динамика. / Под ред. Фриберга С. и Ботореля П. М.: Мир, 1990. 320 с.]. Благодаря малому размеру капель (десятки нанометров) микроэмульсии оптически прозрачны и обладают большой удельной поверхностью. Извлекаемое вещество может распределяться не только в объем, но и на поверхность капель микроэмульсии, при этом возможно возрастание степени извлечения целевого компонента. Особый интерес с технологической точки зрения представляют прямые ("масло в воде") микроэмульсии. Поскольку внешней фазой (дисперсионной средой) прямых микроэмульсий является водная фаза, то такие микроэмульсии значительно менее пожароопасны и токсичны, чем растворы экстрагента в органическом растворителе или обратные ("вода в масле") микроэмульсии.
Ранее [Е.В.Юртов, Н.М.Мурашова, А.И.Симонов. Микроэмульсионное выщелачивание меди. // Химическая технология, 2004, №8, С.35-39] была показана возможность извлечения металлов из сырья в виде твердой фазы с помощью микроэмульсий на примере извлечения меди из оксида меди (II), образцов гальванических медьсодержащих шламов и концентрата медной руды. Способ включает измельчение сырья и выщелачивание меди с помощью микроэмульсии, состоящей из водной фазы и органической фазы, содержащей керосин и в качестве экстрагента ди-(2-этилгексил)фосфат натрия. Выщелачивание проводили прямой и обратной микроэмульсиями. Прямая микроэмульсия в качестве дополнительного поверхностно-активного вещества (соПАВ), необходимого для образования микроэмульсии, содержала октанол. Прямая микроэмульсия содержала 50,1% об. водной фазы, 24,4% об. керосина, 1,6% об. октанола (т.е. 3,2% об. в органической фазе), концентрация ди-(2-этилгексилфосфата натрия в микроэмульсии составляла 0,756 моль/л (т.е. 1,51 моль/л в органической фазе). Основным недостатком описанного способа являются низкие скорость выщелачивания и степень извлечения металла: при выщелачивании прямой микроэмульсией в течение нескольких суток степень извлечения меди из образца руды составила 13%, из образца гальванического шлама - 80%.
Техническим результатом изобретения является увеличение скорости и степени извлечения металлов по сравнению с в прототипом.
Предлагается способ извлечения металлов из твердофазного сырья, включающий измельчение сырья, выщелачивание с помощью прямой микроэмульсии, состоящей из водной фазы и органической фазы, содержащей керосин и в качестве экстрагентов ди-(2-этилгексил)фосфат натрия и ди-(2-этилгексил)фосфорную кислоту, отделение твердой фазы и реэкстракцию извлекаемых компонентов. Содержание водной фазы в микроэмульсии может варьировать от 30 до 75%. В состав органической фазы микроэмульсии вводят ди-(2-этилгексил)фосфат натрия в концентрациях 1,0-2,0 моль/л, органический растворитель - керосин, ди-(2-этилгексил)фосфорную кислоту в концентрациях 0,3-0,6 моль/л и, при необходимости, алифатический спирт в концентрациях до 5% об. Микроэмульсия образуется самопроизвольно при смешивании всех ее компонентов. Измельченное сырье смешивают с экстрагентсодержащей микроэмульсией, выщелачивание проводят в закрытом сосуде при подогреве и перемешивании, по окончании процесса твердую фазу отделяют, а целевые компоненты извлекают из микроэмульсии реэкстракцией.
Основным отличием заявленного изобретения от прототипа является состав прямой микроэмульсии. В состав органической фазы микроэмульсии вводят ди-(2-этилгексил)фосфат натрия в концентрациях 1,0-2,0 моль/л, органический растворитель - керосин, экстрагент - ди-(2-этилгексил)фосфорную кислоту в концентрациях 0,3-0,6 моль/л и, при необходимости, октанол в концентрациях до 5% об. Такое сочетание компонентов обусловливает более высокую скорость и степень извлечения металлов, чем в прототипе.
В отличие от аналогов заявленный способ выщелачивания с помощью экстрагентсодержащей микроэмульсии позволяет полностью совместить стадии выщелачивания и экстракции, что дает возможность селективного извлечения ряда цветных и редких металлов уже на стадии выщелачивания, без использования концентрированных кислот и дорогостоящих органических растворителей. Это позволяет осуществить комплексное использование сырья, приводит к сокращению капитальных затрат и эксплуатационных расходов и уменьшению нагрузки на окружающую среду.
Селективность процесса определяется селективностью входящего в состав микроэмульсии промышленного экстрагента - ди-(2-этилгексил)фосфорной кислоты, который хорошо извлекает РЗЭ, ванадий, кобальт, никель, медь (в форме катионов). При этом кремний, кальций, алюминий, железо будут слабо извлекаться, что позволит избавиться от большей части из них уже на стадии выщелачивания. На последующих технологических стадиях потребуется только дополнительная экстракционная очистка целевых компонентов. Предлагаемая прямая микроэмульсия имеет нейтральную реакцию водной фазы, что позволяет предотвратить образование гелей кремниевой кислоты в случае переработки сырья с высоким содержанием кремния. Отметим, что все компоненты предлагаемой микроэмульсии малотоксичны. Внешней фазой предлагаемой микроэмульсии является вода - негорючая, нетоксичная и очень дешевая жидкость, что выгодно отличает прямую микроэмульсию от описанного в изобретении-аналоге раствора экстрагента в органическом растворителе перхлорэтилене (Скороваров Д.И., Бучихин Е.П., Жилин Ю.С., Бочкарев В.М. "Способ экстракционного извлечения металлов из руд и концентратов". Патент RU 2207387 С2 от 07.04.2001).
Пример 1
Получение микроэмульсии. Навеску гидроксида натрия (квалификации "ч") 8,32 г растворяли в 130,0 мл дистиллированной воды. К полученному раствору добавляли 57,1 мл керосина ("Осветительный", ТУ 38.401-58-10-90) и 68,6 мл ди-(2-этилгексил)фосфорной кислоты (квалификации "ч", содержание основного вещества не менее 98%) и 4,3 мл октанола (квалификации "ч"). Водную (раствор гидроксида натрия) и органическую (керосин и ди-(2-этилгексил)фосфорная кислота) фазы энергично перемешивали. В процессе перемешивания происходила реакция нейтрализации между гидроксидом натрия и ди-(2-этилгексил)фосфорной кислотой и наблюдалось разогревание смеси и превращение мутной гетерогенной эмульсии в прозрачную гомогенную микроэмульсию.
Максимально возможное содержание дополнительных экстрагентов в микроэмульсии устанавливали титрованием до момента образования неустойчивой системы (помутнения и разделения фаз) при температурах 20 и 40°С. Результаты приведены в таблице 1.
Стабильность микроэмульсии в присутствии различных экстрагентов
Извлечение металлов. В колбу, содержащую 100 мл приготовленной микроэмульсии, вносили 1,0 г окисленного кобальтомедного концентрата (т.е. соотношение Т:Ж равнялось 1:100). Состав концентрата приведен в таблице 2. Концентрат был просеян сквозь сито с ячейкой 0,2 мм. Выщелачивание проводили в закрытой колбе при температуре 40°С и механическом перемешивании (вращательное движение с амплитудой 4 мм и частотой 200 об/мин) в водяной бане-шейкере "ELPAN-457" (Польша). По окончании выщелачивания отделяли твердую фазу и реэкстрагировали металлы из микроэмульсии 10% серной кислотой. Затем определяли содержание меди в реэкстракте фотометрическим методом по окрашиванию купризоном.
Состав концентрата
В таблице 3 показано, как влияют различные экстрагенты в микроэмульсии на извлечение меди из окисленного кобальтомедного концентрата. Содержание водной фазы во всех представленных в таблице 2 микроэмульсиях составляло 50% об.; состав органической фазы микроэмульсий - концентрация ди-(2-этилгексил)фосфата натрия 1,6 моль/л, содержание октанола 3,3% об.
Влияние экстрагентов в микроэмульсии на извлечение меди
Таким образом, наилучшие результаты по извлечению меди в процессе выщелачивания прямой микроэмульсией ди-(2-этилгексил)фосфата натрия были получены при введении в состав органической фазы ди-(2-этилгексил)фосфорной кислоты.
Пример 2
Получение микроэмульсий. Навеску гидроксида натрия (квалификации "ч") растворяли в дистиллированной воде. К полученному раствору добавляли керосин ("Осветительный", ТУ 38.401-58-10-90) и ди-(2-этилгексил)фосфорную кислоту ("Merck", содержание основного вещества не менее 98%). Водную (раствор гидроксида натрия) и органическую (керосин и ди-(2-этилгексил)фосфорная кислота) фазы энергично перемешивали. В процессе перемешивания происходила реакция нейтрализации между гидроксидом натрия и ди-(2-этилгексил)фосфорной кислотой и наблюдалось разогревание смеси и превращение мутной гетерогенной эмульсии в прозрачную гомогенную микроэмульсию. Максимально возможное содержание воды в микроэмульсии устанавливали путем титрования до момента образования неустойчивой системы (помутнения и разделения фаз) при температуре 80°С. Состав полученных прямых микроэмульсий приведен в таблице 4.
Область существования микроэмульсии ди-(2-этилгексил) фосфата натрия, содержащей ди-(2-этилгексил) фосфорную кислоту
При содержании воды выше указанных в таблице 4 значений микроэмульсия расслаивается на две фазы, что делает ее непригодной для проведения выщелачивания. Таким образом, микроэмульсия остается устойчивой в значительном интервале содержания воды при введении в состав органической фазы ди-(2-этилгексил)фосфата натрия в количестве 1,0-2,0 моль/л вместе с ди-(2-этилгексил)фосфорной кислотой в количестве 0,3-0,6 моль/л.
Пример 3
Получение микроэмульсий. Компоненты микроэмульсий смешивали так же, как и в примере 2. Методом титрования были определены максимальные концентрации воды, при которых существует микроэмульсия в системе ди-(2-этилгексил)фосфат натрия - керосин - вода - октанол в интервале исходных концентраций ди-(2-этилгексил)фосфата натрия в органической фазе 1,0-2,0 моль/л в присутствии различных количеств октанола (в таблице 5 указано содержание в органической фазе, % об.). Результаты исследования приведены в таблице 5.
Влияние октанола на область существования микроэмульсии ди-(2-этилгексил)фосфата натрия
Таким образом, введение октанола в состав органической фазы позволяет повысить содержание воды в прямой микроэмульсии ди-(2-этилгексил)фосфата натрия до 75% об. Это дает возможность получать устойчивые прямые микроэмульсии в широком интервале содержания воды от 30 до 75% об. Применение для выщелачивания микроэмульсий с содержанием воды менее 30% об. технологически нецелесообразно, т.к. при этом повышается расход дорогостоящих компонентов органической фазы - ди-(2-этилгексил)фосфорной кислоты ди-(2-этилгексил)фосфата натрия.
Пример 4
Получение микроэмульсии. Навеску гидроксида натрия (квалификации "ч") 8,32 г растворяли в 130,0 мл дистиллированной воды. К полученному раствору добавляли 57,1 мл керосина ("Осветительный", ТУ 38.401-58-10-90) и 68,6 мл ди-(2-этилгексил)фосфорной кислоты (квалификации "ч", содержание основного вещества не менее 98%) и 4,3 мл октанола (квалификации "ч"). Водную (раствор гидроксида натрия) и органическую (керосин и ди-(2-этилгексил)фосфорная кислота) фазы энергично перемешивали. В процессе перемешивания происходила реакция нейтрализации между гидроксидом натрия и ди-(2-этилгексил)фосфорной кислотой и наблюдалось разогревание смеси и превращение мутной гетерогенной эмульсии в прозрачную гомогенную микроэмульсию. Непосредственно перед процессом выщелачивания в микроэмульсию вводили избыток ди-(2-этилгексил)фосфорной кислоты в количестве 6 мл на 100 мл микроэмульсии.
Состав полученной прямой микроэмульсии характеризуется следующими цифрами: содержание водной (внешней) фазы составляет 47% об., концентрация ди-(2-этилгексил)фосфата натрия в органической фазе микроэмульсии составляла 1,41 моль/л, концентрация ди-(2-этилгексил)фосфорной кислоты - 0,32 моль/л, содержание октанола - 3,1% об., органический растворитель - керосин.
Извлечение металлов. В колбу, содержащую 106 мл приготовленной микроэмульсии, вносили 1,0 г окисленного кобальтомедного концентрата. Состав концентрата приведен в таблице 1. Концентрат был просеян сквозь сито с ячейкой 0,2 мм.
Выщелачивание проводили в закрытой колбе при температуре 80°С и механическом перемешивании (вращательное движение с амплитудой 4 мм и частотой 200 об/мин) в водяной бане-шейкере "ELPAN-457" (Польша). По окончании выщелачивания отделяли твердую фазу и реэкстрагировали металлы из микроэмульсии 10% серной кислотой. Затем определяли содержание металлов в реэкстракте методом атомно-абсорбционной спектроскопии на приборе "Квант-АФА".
Результаты извлечения меди, кобальта, никеля и железа приведены в таблице 6.
Результаты выщелачивания
Таким образом, применение в качестве выщелачивающего реагента прямой микроэмульсии, содержащей воду, керосин, ди-(2-этилгексил)фосфат натрия, ди-(2-этилгексил)фосфорную кислоту и октанол, позволяет селективно (по сравнению с железом) извлекать цветные металлы - медь, кобальт и никель уже на стадии выщелачивания. Тем самым в ходе описанного процесса происходит как извлечение металлов из твердой фазы в жидкую (выщелачивание), так и их разделение с помощью экстрагента (экстракция).
Пример 5
Получение микроэмульсии. Навеску гидроксида натрия (квалификации "ч") 3,2 г растворяли в 32 мл дистиллированной воды. К полученному раствору добавляли 13,6 мл керосина ("Осветительный", ТУ 38.401-58-10-90) и 34,4 мл ди-(2-этилгексил)фосфорной кислоты ("Merck", содержание основного вещества не менее 98%). Водную (раствор гидроксида натрия) и органическую (керосин и ди-(2-этилгексил)фосфорная кислота) фазы энергично перемешивали. В процессе перемешивания происходила реакция нейтрализации между гидроксидом натрия и ди-(2-этилгексил)фосфорной кислотой и наблюдалось разогревание смеси и превращение мутной гетерогенной эмульсии в прозрачную гомогенную микроэмульсию. Микроэмульсия оптически прозрачна, устойчива в закрытом сосуде в течение неопределенно долгого времени без изменения ее свойств. Состав полученной прямой микроэмульсии характеризуется следующими цифрами: содержание водной (внешней) фазы составляет 40% об., концентрация ди-(2-этилгексил)фосфата натрия в органической фазе микроэмульсии составляла 1,65 моль/л, концентрация ди-(2-этилгексил)фосфорной кислоты - 0,50 моль/л.
Извлечение металлов. В колбу, содержащую 80 мл приготовленной микроэмульсии, вносили пробу того же окисленного кобальтомедного концентрата, что и в примере 1. Концентрат был предварительно измельчен путем размола на шаровой мельнице. Выщелачивание проводили в закрытой колбе при температуре 80°С и различных условиях диспергирования - ультразвуковом и механическом. Ультразвуковое - с помощью ультразвукового диспергатора УЗД-1/0,1 (Россия), механическое вращательное движение с амплитудой 4 мм и частотой 200 об/мин в водяной бане-шейкере "ELPAN-457" (Польша). По окончании выщелачивания отделяли твердую фазу и реэкстрагировали металлы из микроэмульсии 10% серной кислотой. Затем определяли содержание меди в реэкстракте фотометрическим методом по окрашиванию купризоном. Результаты извлечения меди приведены в таблице 7.
Результаты выщелачивания
Пример 6
Получение микроэмульсии. Метод получения и состав микроэмульсии - те же, что и в примере 5.
Извлечение металлов. В колбу, содержащую 80 мл приготовленной микроэмульсии, вносили 0,8 г гальванического медьсодержащего шлама, полученного методом осаждения известковым молоком, содержание меди 8,4% мас., влажность 30%. Выщелачивание проводили в закрытой колбе при температуре 80°С и ультразвуковом диспергировании с помощью ультразвукового диспергатора УЗД-1/0,1. По окончании выщелачивания отделяли твердую фазу и реэкстрагировали металлы из микроэмульсии 10% серной кислотой. Затем определяли содержание меди в реэкстракте фотометрическим методом по окрашиванию купризоном. Результаты извлечения меди приведены в таблице 8.
Результаты выщелачивания
Пример 7
Получение микроэмульсии. Метод получения и состав микроэмульсии - те же, что и в примере 5.
Извлечение металлов. В колбу, содержащую 80 мл приготовленной микроэмульсии, вносили 0,8 г летучей золы мусоросжигательного завода, содержание меди 0,039% мас. Способ выщелачивания и анализа - те же, что и в примере 6. Результаты извлечения меди приведены в таблице 9.
Результаты выщелачивания
Таким образом, из примеров 5-7 видно, что применение в качестве выщелачивающего реагента микроэмульсии указанного выше состава позволяет значительно повысить скорости и степени извлечения металлов из сырья в виде твердой фазы по сравнению с в прототипом. В прототипе при проведении выщелачивания в течение нескольких суток степень извлечения меди из образца руды составила 13%, из образца гальванического шлама - 80%; в описанных выше примерах при выщелачивании в течение 2 часов степень извлечения меди из руды составила 52%, из образцов гальванического шлама и летучей золы мусоросжигательного завода - 100%.
название | год | авторы | номер документа |
---|---|---|---|
Способ переработки цинксодержащего гальванического шлама для получения наночастиц оксида цинка | 2022 |
|
RU2799182C1 |
СПОСОБ ОТДЕЛЕНИЯ ИТТРИЯ И ИТТЕРБИЯ ОТ ПРИМЕСЕЙ ТИТАНА | 2019 |
|
RU2713766C1 |
ЭКСТРАГЕНТ ДЛЯ ИЗВЛЕЧЕНИЯ МЕТАЛЛОВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2003 |
|
RU2260063C2 |
СПОСОБ ПЕРЕРАБОТКИ УРАНОВЫХ РУД | 2012 |
|
RU2481411C1 |
НОВЫЙ ЭКСТРАГЕНТ, ИСПОЛЬЗУЕМЫЙ ДЛЯ ЭКСТРАКЦИИ РЕДКОЗЕМЕЛЬНЫХ МЕТАЛЛОВ ИЗ ВОДНОГО РАСТВОРА ФОСФОРНОЙ КИСЛОТЫ, И ЕГО ПРИМЕНЕНИЕ | 2017 |
|
RU2762074C2 |
СПОСОБ ПЕРЕРАБОТКИ УРАНОВЫХ РУД | 2010 |
|
RU2434961C1 |
ПРИМЕНЕНИЕ СИНЕРГЕТИЧЕСКОЙ СМЕСИ ЭКСТРАГЕНТОВ ДЛЯ ИЗВЛЕЧЕНИЯ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ ИЗ ВОДНОЙ СРЕДЫ, СОДЕРЖАЩЕЙ ФОСФОРНУЮ КИСЛОТУ | 2019 |
|
RU2796309C2 |
Способ извлечения концентрата скандия из скандийсодержащих кислых растворов | 2018 |
|
RU2685833C1 |
ЭКСТРАГЕНТ НА ОСНОВЕ ЧАСТИЧНО ФТОРИРОВАННОГО ТРИАЛКИЛАМИНА И СПОСОБ ИЗВЛЕЧЕНИЯ МЕТАЛЛОВ И КИСЛОТ ИЗ ВОДНО-СОЛЕВЫХ РАСТВОРОВ | 2017 |
|
RU2674371C1 |
СПОСОБ ИЗВЛЕЧЕНИЯ СЕРЕБРА ИЗ ХЛОРИДНЫХ РАСТВОРОВ | 2016 |
|
RU2631440C1 |
Изобретение относится к гидрометаллургическим способам переработки сырья цветных металлов, а именно к области выщелачивания и экстракции. Способ экстракционного извлечения металлов из твердофазного сырья включает измельчение сырья, выщелачивание с помощью прямой микроэмульсии, состоящей из водной фазы и органической фазы, содержащей керосин и в качестве экстрагента ди-(2-этилгексил)фосфат натрия, отделение твердой фазы и реэкстракцию извлекаемых металлов. При этом выщелачивание ведут микроэмульсией, состоящей из 30-75% об. водной фазы и содержащей в органической фазе ди-(2-этилгексил)фосфат натрия в количестве 1,0-2,0 моль/л и дополнительно введенную ди-(2-этилгексил)фосфорную кислоту в количестве 0,3-0,6 моль/л. В состав органической фазы микроэмульсии можно дополнительно вводить алифатический спирт в количестве до 5% об. Техническим результатом является полное совмещение стадии выщелачивания и экстракции, что дает возможность селективного извлечения ряда цветных и редких металлов уже на стадии выщелачивания, без использования концентрированных кислот и дорогостоящих органических растворителей. 1 з.п. ф-лы, 9 табл.
ЮРТОВ Е.В | |||
и др | |||
Микроэмульсионное выщелачивание меди | |||
- Химическая технология, 2004, №8, с.35-39 | |||
СПОСОБ ЭКСТРАКЦИОННОГО ИЗВЛЕЧЕНИЯ МЕТАЛЛОВ ИЗ РУД И КОНЦЕНТРАТОВ | 2001 |
|
RU2207387C2 |
Грузовое натяжное устройство цепного ковшевого элеватора | 1949 |
|
SU88002A1 |
УСТРОЙСТВО ТОРМОЖЕНИЯ ТУРБИНЫ В ГАЗОТУРБИННОМ ДВИГАТЕЛЕ В СЛУЧАЕ РАЗРУШЕНИЯ ВАЛА ТУРБИНЫ И ДВУХТАКТНЫЙ ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ | 2008 |
|
RU2469194C2 |
JP 54082317 A, 30.06.1979 | |||
US 4971714 A, 20.11.1990. |
Авторы
Даты
2009-03-20—Публикация
2007-04-17—Подача