Изобретение относится к медицине и может быть использовано при получении культур стволовых клеток для различных целей.
С учетом возрастания области применения стволовых клеток перед цитологами достаточно остро стоит проблема получения в короткий временной период требуемого количества мультипотентных мезенхимальных стволовых клеток с низкой гетерогенностью и высокой жизнеспособностью, поскольку именно такие клетки необходимы для решения практических задач.
Стромальные костно-мозговые клетки-предшественники, называемые также мезенхимальными стволовыми клетками (МСК), могут быть выделены из различных тканей. Они представляют собой малочисленную популяцию клеток, характеризующихся большим пролиферативным потенциалом, способных к самоподдержанию с сохранением недифференцированного состояния, а также обладающих возможностью дифференцироваться в различные клеточные типы под действием определенных стимулов. Способность МСК дифференцироваться, по крайней мере, в клетки тканей мезенхимального происхождения лежит в основе их репаративного потенциала.
До настоящего времени костный мозг рассматривался как главный источник стволовых клеток взрослого организма. Костный мозг содержит гемопоэтические стволовые клетки и их более коммитированные потомки, строму, а также так называемые мезенхимальные стромальные клетки или клетки-предшественники взрослого организма (МСК) (Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991 #9 Vol.5, p.641-650; Friedenstein AJ. Precursor cells of mechanocytes. Int. Rev. Cytol. 1976 #47, p.327-359).
Известно, что МСК - это малочисленная популяция клеток, которые обладают способностью к самоподдержанию, могут длительно пролиферировать вне организма и обладают способностью к дифференцировке в различные клеточные типы, такие как адипо- и хондроциты, остеобласты, миоциты, нейроны. Сейчас доказано существование МСК не только в костном мозге, но и практически во всех тканях организма, например в коже, жировой ткани, эпителии тонкого кишечника и др. (Zuk, P.A., Zhu, M., Mizuno H., et al., Multiliniage cells from human adipose tissue: implications for cell-based therapies. // Tissue Eng. - 2001-Vol.7 - P. 211-226; Zuk PA, Zhu, M., Mizuno H. et al Human adipose tissue is a source of multipotent stem cells. // Molecular biology of the cell - 2002 - Vol.13 - P.4279-4295 и др.).
Известен, например, способ выращивания человеческих мезенхимальных стволовых клеток, взятых из крови, в котором одним из условий является повышенное количество СО2 (патент US 7060494 от 13.06.2006, класс 435/366, C12N 5/00).
Жировая ткань рассматривается как одна из альтернатив костному мозгу для получения МСК и последующего их применения в терапевтических целях. Подкожная жировая клетчатка, как и костный мозг, является производным мезенхимы и содержит строму, которая может быть легко изолирована. К тому же процедура взятия жировой ткани является значительно менее травматичной и переносится пациентами значительно легче, чем пункция костного мозга. Многими исследователями, независимо друг от друга показано, что клетки, выделяемые при ферментативной обработке жировой ткани и последующем культивировании in vitro, способны дифференцироваться в различные клеточные типы под воздействием химических стимулов (Zuk PA, Zhu, M., Mizuno H. et al Human adipose tissue is a source of multipotent stem cells. // Molecular biology of the cell - 2002 - Vol.13 - P. 4279-4295; Katz AJ, Tholpady A, Tholpady SS, Shang H, Ogle RC. Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells. Stem Cells. 2005 # 23 Vol.3, p.412-423). Полученные данные свидетельствуют о том, что МСК, выделенные из жировой ткани и культивируемые in vitro, могут быть использованы в регенеративной медицине. В то же время методы выделения МСК во многих лабораториях различаются. Большинство исследователей для выделения МСК из жировой ткани используют методику, предложенную в работе Ryden (Rydén M, Dicker A, Götherström C, Aström G, Tammik C, Amer P, Le Blanc K. Functional characterization of human mesenchymal stem cell-derived adipocytes. Biochem Biophys Res Commun. 2003 #311 Vol.2. p391-397), которая заключается в измельчении ткани, обработке ее коллагеназой, нескольких последовательных центрифугированиях и адгезии полученного клеточного осадка на пластике. Получаемые при выделении из жира клетки называют мультипотентными мезенхимальными стромальными клетками-предшественниками, выделенными из липоаспирата или жировой ткани (далее - лМСК). Возможное использование лМСК в регенеративной медицине ставит перед исследователями некоторые проблемы - как за меньший период времени культивирования МСК вне организма человека нарастить достаточную для использования клеточную массу.
Авторами данного изобретения была решена задача получения лМСК в условиях действия пониженного (до 5%) содержания кислорода на пролиферацию, жизнеспособность и экспрессию маркеров клеток-предшественников, выделенных из липоаспирата человека, при постоянном культивировании.
Техническим результатом является создание нового способа, расширяющего арсенал средств получения мезенхимальных стромальных клеток при повышении их выхода с сохранением их фенотипа и высокой жизнеспособности.
Поставленная задача решена с помощью способа получения культур мезенхимальных стромальных клеток человека, выделенных из липоаспирата, включающего выделение клеток-предшественников путем измельчения ткани, обработки ее коллагеназой, нескольких последовательных центрифугирований и адгезии полученного клеточного осадка на пластике и последующее культивирование до получения целевой клеточной культуры, культивирование от 4 до 10 дней в условиях гипоксии с содержанием кислорода не менее 5%, при этом используют клетки от 1-го до 2-го пассажей, после чего определяют количество живых, некротических и апоптотических клеток и проводят анализ фенотипа мезенхимальных стромальных клеток путем их идентификации с помощью набора моноклональных гематопоэтических и эндотелиальных антител CD31, CD34, CD62L, CD62E, CD62P, CD117(c-kit), HLA-DR, CD9, CD54, CD71, CD90, CD 105, HLA-ABC, виментин, которые являются маркерами, характерными для мезенхимальных стромальных клеток-предшественников.
В процессе проведенных исследований авторами было установлено, что на ранних этапах культивирования МСК, выделенных из липоаспирата, также как и из костного мозга, в условиях пониженного содержания кислорода (5% O2) происходит значительная стимуляция пролиферации клеток-предшественников.
Кроме того, неожиданно авторами было обнаружено, что культивирование стромальных клеток-предшественников, выделенных из липоаспирата, от 4 до 10 суток при использовании 1-2 пассажей в условиях гипоксии не только ускоряет пролиферацию клеток, но и приводит к снижению гетерогенности культуры, уменьшению количества апоптотических и некротических клеток при повышении ее пролиферативной активности и жизнеспособности клеток и при сохранении фенотипа и дифференцировочного потенциала, т.е. по сути нами была решена проблема ускоренного получения культур лМСК с низкой гетерогенностью и высокой жизнеспособностью.
Способ осуществляют следующим образом.
Липоаспират получали после процедуры липосакции у пациентов, обратившихся в специализированную клинику. Материал до выделения хранили в холодильнике при 4°С.
Выделение лМСК из липоаспирата и получение первичной культуры проводили с помощью следующих средств.
Материалы:
Пробирки стерильные, 50 мл (Nunc, Дания)
Пипетки стерильные, 10 и 25 мл (Nunc, Дания)
Клеточный фильтр, стерильный, 100 нм (Nunc, Дания)
Чашки Петри, 60 и 90 мм, стерильные, (Nunc, Дания)
Флаконы культуральные, 25 см2 и 75 см2, (Nunc, Дания)
Пробирки нестерильные для проточного цитофлуориметра
Наконечники стерильные на 200-1000 мкл (Eppendorf, Германия)
Ростовая среда: DMEM с низким содержанием глюкозы, пенициллин 100 ед/мл, стрептомицин 100 мкг/мл
Амфотерицин В 50 мкг/мл, L-глютамин 2 мМ, натрия бикарбонат 1 г/л
Сыворотка фетальная телячья (FBS) (Hyclone, США)
Трипсин-EDTA 0,25-0,04% (Gibco, UK)
D-PBS (Gibco, UK)
Коллагеназа IА (Sigma-Aldrich, США)
Полная среда: ростовая среда+10% FBS
Оборудование
Центрифуга Eppendorf 5804R
Ламинарный шкаф (Сампо, Россия)
Водяная баня (Elmi, Латвия)
Весы (Ohaus, Германия)
Электрическая пипетка
Пипетки автоматические, набор (Eppendorf, Германия)
Микроскоп инвертированный, фазово-контрастный (Leica, Германия)
Проточный цитофлуориметр BeckmanCoulter Epix XL (BeckmanCoulter, США)
CO2-инкубатор (Sanyo, Япония)
Стандартные условия культивирования: 5% CO2 + 95% воздуха, 37°С, 100% влажность.
В 50 мл пробирку помещали липоаспират (примерно 1/3 от объема пробирки) и долить до 50 мл D-PBS, аккуратно встряхивали 5 раз.
Центрифугировали 5 минут при 1500 оборотов в минуту, при 18°С. На дне пробирки находится осадок из эритроцитов, над осадком - слой буфера и затем липоаспират. Липоаспират сверху покрыт слоем жира из разрушенных адипоцитов.
Осторожно перенесли липоаспират в чистую стерильную пробирку (50 мл) и повторно отмыли ткань при следующих условиях - 10 минут, 1000 об/мин, 18°С.
Осторожно перенесли липоаспират в предварительно взвешенную стерильную пробирку (50 мл), взвесили и добавили раствор коллагеназы IA. Приготовили 0,15% раствор коллагеназы.
В пробирку с предварительно взвешенным липоаспиратом добавили раствор фермента до конечной концентрации 0,075%.
Инкубировали на водяной бане при 37°С, 30 минут, периодически встряхивали - 1 раз в 5 минут.
Инактивировали коллагеназу IA добавлением полной среды до 50 мл.
Центрифугировали 5 минут, 1500 об/мин, 18°С.
Супернатант слили и осадок ресуспендировали в 10 мл полной среды, довести до 50 мл ростовой средой
Центрифугировали 5 минут, 1500 об/мин, 18°С.
Супернатант слили и осадок ресуспендировали в 10 мл полной среды.
Клеточный фильтр поместили на 50 мл пробирку и суспензию клеток и остатков ткани пропустили через него. В пробирку добавили ростовую среду до 50 мл.
Центрифугировали 10 минут, 1000 об/мин, 18°С.
Супернатант слили, осадок ресуспендировали в 10 мл ростовой среды.
Отобрали аликвоту среды с клетками и подсчитали количество ядросодержащих клеток в гемацитометре.
Развели клеточную суспензию из расчета, чтобы плотность посадки составляла 2×105-300×105 см2.
Посадили клетки в культуральные флаконы, оставили в СО2-инкубаторе на 24 часа.
Отобрали надосадочную жидкость с неприкрепившимися клетками и 2 раза промыть D-PBS.
Добавили нужное количество полной среды.
Меняли среду через 2 дня на 3.
Контролировали рост клеток под микроскопом.
Пассировали клетки при достижении 70-80% конфлуентности.
Моделирование гипоксии in vitro проводили следующим образом. Часть клеток сразу после выделения помещали в мультигазовый инкубатор Sanyo (Япония), где поддерживалась концентрация кислорода 5%. Культура клеток постоянно находилась в условиях пониженного содержания кислорода, и период нормоксии составлял не более 30 минут при замене среды.
После чего была изучена пролиферативная активность лМСК, выделенных из липоаспирата человека.
Для анализа пролиферации клеток в культуре использовали метод видеомикроскопии. С помощью микроскопа Leica DM IL (Leica, Германия), снабженного цветной видеокамерой, изображение передавалось на компьютер и впоследствии анализировалось. Оцифровка лМСК, культивируемых в газовой среде при стандартном (21% O2) и пониженном (5% O2) содержании кислорода, проводили через каждые 24 часа, начиная с первого дня после посадки и до момента следующего пассирования и используя объектив ×10. На дно каждого флакона снаружи были нанесены маркерные точки, для того чтобы проводить фотографирование одних и тех же полей зрения на разных сроках культивирования. В каждом флаконе фотографировали по 10 стационарных полей зрения, площадью 1,0 мм2. На полученных изображениях клетки подсчитывали с помощью программы анализа изображения SigmaScan Pro 5.0 Image Analysis Software (SPSS Inc, США).
Оценку эффективности прикрепления культивируемых клеток проводили следующим образом: при пассировании клеток плотность посадки составляла в среднем 3000 клеток на см2. Эффективность прикрепления оценивали по количеству прикрепленных клеток на 1 см2 через 24 часа после посадки.
Была проведена оценка жизнеспособности лМСК человека.
Жизнеспособность лМСК оценивали с помощью набора ANNEXIN V-FITC-PI (Immunotech, Франция) - по стандартной методике на проточном цитофлуориметре. Метод основан на одновременном использовании пропидия йодида (PI), проникающего в поврежденные клетки и взаимодействующего с ДНК, и аннексина V (Annexin V меченый FITC), аффинного к фосфатидилсерину, который в процессе апоптоза локализуется на клеточной поверхности и формирует один из специфичных сигналов для распознавания апоптотических клеток. Использование пары AnnexinV-FITC - PI позволяет идентифицировать живые, некротические и апоптотические клетки.
Для анализа отбирали 2×105 клеток, ресуспендировали в фосфатном буфере и повторно центрифугировали при 1000 оборотов в минуту, в течение 5 минут. Полученный клеточный осадок ресуспендировали в ледяном связывающем буфере, добавляли растворы Annexin V-FITC и PI, и инкубировали в течение 10 минут при t=+4°С, после чего объем пробы доводили до 500 мкл связывающим буфером и проводили анализ на проточном цитофлуориметре Epics XL (Beckman Coulter, США). Анализировали не менее 10000 событий.
Жизнеспособность клеток оценивали в конце пассажа в суспензии клеток, приготовленных для субкультивирования.
Анализ фенотипа культивируемых лМСК проведен следующим образом.
Для идентификации выделенных и культивируемых клеток, подтверждения статуса лМСК использовали набор моноклональных антител фирмы Beckman Coulter - гематопоэтические и эндотелиальные (CD31, CD34, CD62L, CD62E, CD62P, CD117(c-kit), HLA-DR) и также антитела к CD9, CD54, CD71, CD90, CD105, HLA-ABC, виментину, которые являются маркерами, характерными для мезенхимальных стромальных клеток-предшественников. В качестве изотипического контроля к антителам использовались FITC- и РЕ-меченые IgG соответствующего класса. Для анализа выбранных маркеров клетки после отбора среды культивирования промывали фосфатным буфером, снимали раствором трипсин-ЭДТА и ингибировали фермент избытком DMEM с 10% FBS. Полученную суспензию центрифугировали (1000 об/мин, 5 минут), после чего супернатант сливали, ресуспендировали в 1 мл фосфатного буфера с 1% FBS, после чего проводили подсчет клеток в гемацитометре и готовили пробы с концентрацией клеток не менее 105 в пробе. Клетки перемешивали и инкубировали с антиген-специфичными антителами или изотипического контроля в течение 20 минут при t=+4°C. После чего объем пробы доводили до 800 мкл фосфатным буфером и проводили фенотипирование на проточном цитофлуориметре EPIX XL (Beckman Coulter, США). При двойном окрашивании первичными антителами окрашивали по приведенной ранее схеме, затем отмывали от несвязавшейся метки (центрифугирование в избытке фосфатного буфера с 1% FBS, 1000 rpm, 5 минут), добавляли вторичные FITC- или РЕ-антитела и инкубировали в течение 20 минут при комнатной температуре, после чего доводили объем пробы до 800 мкл и проводили фенотипирование. Иммунофенотипирование проводили в нескольких повторах, для каждого маркера анализировали не менее 10000 клеток.
Таблицы 1-11 поясняют предлагаемое изобретение
Пример 1.
Выделение и культивирование лМСК
Вес липоаспирата - 49 г.
Время после липосакции - 72 часа.
Количество ядросодержащих клеток - 4,2х106.
Сразу после выделения все клетки были разделены на 2 части и помещены в условия нормоксии (95% воздуха, 5% СО2, N-клетки) или гипоксии (5% О2, 5% CO2, 90% N2, Нур-клетки).
Время до первой отмывки - 24 часа.
Первое пассирование - через 4 дня.
Количество пассажей - 2.
Пролиферативная активность лМСК.
Определение плотности посадки на 1 пассаже было затруднено в связи с тем, что при пересевании клеток из первичной культуры образуется большое количество клеточных агрегатов и трудно получить равномерное распределение клеток на подложке. Эффективность прикрепления на 2 пассаже составляла 80-90% от плотности посадки и практически не различалась в N- и Нур-клетках.
На втором пассаже проводили определение пролиферативной активности лМСК, как описано выше. На основании полученных данных были построены кривые пролиферации, характеризующие рост лМСК в течение всего пассажа.
В табл. 1 приведены данные по клеточному приросту за все время культивирования во 2 пассаже. Мы не обнаружили увеличения количества клеток, культивируемых в условиях нормоксии, в то время как в условиях гипоксии прирост количества клеток был весьма значительным (табл. 1).
Характер роста клеток в Нур-культурах описывался типичной кривой пролиферации: лаг-фаза в течение 48-72 часов, которая сменялась фазой роста (фиг.1).
Количество удвоений популяции Нур-клеток значительно превышало аналогичные показатели N-клеток, а время удвоения Нур-клеток было существенно меньше (табл.2).
Пример 2.
Вес липоаспирата - 77 г.
Время после липосакции - 20 часов.
Количество ядросодержащих клеток - 18,8×106.
Время до первой отмывки - 24 часа.
Первое пассирование - через 7 дней.
После трипсинизации клеток первичной культуры в суспензии образовывалось большое количество клеточных конгломератов, которые трудно поддавались ресуспендированию, в связи с этим плотность посева 1 пассажа была выше, чем при последующем субкультивировании. Эффективность прикрепления N- и Нур-клеток достоверно не отличалась и составляла около 70%.
В 1-3 день культивирования как в N-, так и Нур-культурах не обнаружено достоверного увеличения количества клеток. После 3 дней культивирования мы наблюдали увеличение количества клеток в обеих культурах, причем количество клеток в гипоксии было значительно больше, чем в нормоксии. Прирост N-клеток составил 540% за 8 дней культивирования, а Нур-клеток - 1290% за то же время (табл.3).
Характер кривой клеточной пролиферации был сходным в N- и Нур-культурах. Лаг-фаза наблюдалась в течение 72-96 часов, после чего начиналась фаза роста (фиг.2).
Оценка жизнеспособности лМСК, культивируемых в условиях гипоксии (5% O2) и нормоксии (20% O2), показала, что различия в содержании O2 не влияют на жизнеспособность клеток, которая остается высокой (90+3%) вне зависимости от выбранной модели культивирования (табл.5).
Пример 3.
Вес липоаспирата - 30 г.
Время после липосакции - 24 часа.
Количество ядросодержащих клеток - 4,0×106.
Время до первой отмывки - 24 часа.
Первое пассирование - через 7 дней.
Пролиферативную активность и жизнеспособность лМСК оценивали на 2 пассаже. Показано, что культивирование клеток в условиях гипоксии стимулировало их пролиферативную активность (табл.6). Количество клеточных удвоений в культуре, постоянно находившейся в условиях пониженного содержания кислорода, было в 2 раза выше, а время удвоения - в 2 раза меньше по сравнению с лМСК в стандартных условиях культивирования (табл.7).
Культивирование в условиях пониженного содержания кислорода (5% Oz) не влияло на жизнеспособность лМСК и составляло 95±0,1% как в нормоксических, так и в гипоксических условиях (табл.8).
Приведенные результаты позволяют сделать вывод о том, что во всех исследованных культурах лМСК снижение содержания кислорода в среде приводило к увеличению пролиферативной активности. Время удвоения клеток в Нур-культурах было значительно ниже, а количество клеточных удвоений за то же время больше, чем в N-культурах во всех трех выделениях.
Кривая клеточной пролиферации как для N-, так и для Нур-клеток имела стандартный вид: лаг-фаза в течение 1-4 дней, которая сменялась фазой роста.
Жизнеспособность N- и Нур-клеток не отличалась в трех независимых сериях и составляла около 90%. Следует отметить, что пролиферативная активность культивируемых в стандартных условиях лМСК, выделенных из липоаспиратов различных доноров, варьирует в очень широких пределах.
Таким образом, культивируемые в газовой среде с пониженным содержанием кислорода (5% O2) лМСК имеют более высокую пролиферативную активность по сравнению с лМСК, находящимися в стандартных условиях (95% воздуха + 5% СО2). Характер роста N- и Нур-клеток не отличается и описывается стандартной кривой пролиферации. Различия в значениях клеточного прироста могут быть связаны с индивидуальными особенностями доноров лМСК. Изменение содержания кислорода в газовой среде не снижает жизнеспособность культивируемых клеток.
Результаты иммунофенотипирования в выделениях лМСК на втором пассаже приведены в табл. 9-11.
Во всех трех экспериментах, как в N-, так и в Нур-культурах не было обнаружено клеток, экспрессирующих маркеры, характерные для эндотелия и гематопоэтических клеток-предшественников (CD31, CD34, CD62L, CD62E, CD62P, CD117(c-kit), HLA-DR). Наличие таких антигенов как CD9, CD54, CD71, CD90, CD105, CD106, HLA-ABC, виментин свидетельствовало о том, что исследуемые клетки можно охарактеризовать как лМСК. Количество клеток, несущих исследуемые маркеры - CD9, CD54, CD71, CD105, CD106, HLA-ABC, виментин не отличалось в N- и в Нур-культурах во всех трех сериях исследований. Доля CD90-положительных клеток варьировала от 75 до 96%. Проведенный иммунофенотипический анализ позволил подтвердить, что клетки, выделенные согласно используемому протоколу, являются стромальными мезенхимальными клетками-предшественниками. Культивирование в условиях пониженного содержания кислорода не влияет на экспрессию антигенов, характерных для МСК, и сохраняет их высокую жизнеспособность клеток в культуре и способность к направленной дифференцировке.
Таким образом, было показано, что культивирование клеток в условиях пониженного (5%) содержания кислорода не влияет на фенотип и жизнеспособность культивируемых клеток и оказывает стимулирующее действие на пролиферативную активность лМСК, что позволяет получить большую клеточную массу за тот же период культивирования по сравнению со стандартными условиями.
Изобретение относится к биотехнологии и может быть использовано при получении культур стволовых клеток для различных целей. Проводят выделение клеток-предшественников, дополнительную отмывку буфером с помощью двух последовательных центрифугирований, ферментативную обработку ткани коллагеназой, несколько последовательных отмывок центрифугированием, адгезию полученного клеточного материала на пластике и последующее культивирование от 4 до 10 дней в условиях гипоксии с содержанием кислорода не менее 5% до получения целевой клеточной культуры. Используют клетки от 1-го до 2-го пассажей. Определяют количество живых, некротических и апоптотических клеток и проводят анализ фенотипа мезенхимальных стромальных клеток путем их идентификации с помощью набора моноклональных антител гематопоэтическим и эндотелиальным маркерам CD31, CD34, CD62L, CD62E, CD62P, CD117(c-kit), HLA-DR, а также к маркерам, характерным для мезенхимальных стромальных клеток-предшественников CD9, CD54, CD71, CD90, CD105, HLA-ABC, виментин. Изобретение позволяет получить мультипотентные мезенхимальные стромальные клетки при повышении их выхода с сохранением их фенотипа и высокой жизнеспособности. 2 ил., 11 табл.
Способ получения культур мезенхимальных стромальных клеток человека, выделенных из липоаспирата, включающий выделение клеток-предшественников, дополнительную отмывку буфером с помощью двух последовательных центрифугирований, обработку ткани коллагеназой, несколько последовательных отмывок центрифугированием, адгезию полученного клеточного осадка на пластике и последующее культивирование до получения целевой клеточной культуры, отличающийся тем, что культивирование ведут от 4 до 10 дней в условиях гипоксии с содержанием кислорода не менее 5%, при этом используют клетки от 1-го до 2-го пассажей, после чего определяют количество живых, некротических и апоптотических клеток и проводят анализ фенотипа мезенхимальных стромальных клеток путем их идентификации с помощью набора моноклональных гематопоэтических и эндотелиальных антител CD31, CD34, CD62L, CD62E, CD62P, CD117(c-kit), а также к маркерам, характерным для мезенхимальных стромальных клеток-предшественников: HLA-DR, CD9, CD54, CD71, CD90, CD105, HLA-ABC, виментин.
WANG Q.et.al | |||
In vitro hypoxic culture of human marrow mesenchymal stem cells and their biological features in adults | |||
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2007 | |||
ЖАМБАЛОВА А.П., ГРИНАКОВСКАЯ O.C | |||
Изучение влияния гипоксии на культивируемые мезенхимальные стволовые клетки человека | |||
ГНЦ РФ Институт медико-биологических проблем РАН | |||
Тезисы работ |
Авторы
Даты
2009-04-10—Публикация
2007-12-25—Подача