Изобретение относится к области нефтедобычи, в частности к обсадным и насосно-компрессорным трубам, предназначенным для эксплуатации в агрессивных средах, содержащих сероводород и углекислый газ.
Известна высокопрочная труба, изготовленная из стали с содержанием углерода менее 0,18 мас.%, легированная хромом, марганцем, молибденом в количествах и соотношении элементов, обеспечивающих закалку стали с образованием мартенситной структуры при проведении нормализации с температур прокатного нагрева (патент РФ №2070585, МПК C21D 9/14). Указанная труба имеет прочностные характеристики, соответствующие ГОСТ 633-80, но не обладает необходимой коррозионной стойкостью и хладостойкостью.
Наиболее близкой по совокупности существенных признаков к предлагаемому изобретению является высокопрочная труба, изготовленная из стали группы прочности L80 типа 9Сr с содержанием до 0,15 мас.% углерода, 8,0-10,0 мас.% хрома, 0,9-1,1 мас.% молибдена, подвергнутая нормализации и отпуску, обеспечивающими достаточные прочностные показатели и стойкость к углекислотной коррозии (API Specification 5CT Eighth Edition, July 1, 2005 / ISO 11960:2004, Petroleum and natural gas industries - Steel pipes for use as casing or tubing for wells. EFFECTIVE DATA: JANUARY 1, 2006). Однако указанная труба не может эксплуатироваться в средах, содержащих сероводород, так как не обладает стойкостью к сульфидному коррозионному растрескиванию под напряжением (СКРН). Кроме того, эта труба имеет низкую хладостойкость, что не позволяет использовать ее в условиях Крайнего Севера.
Задачей, на решение которой направлено настоящее изобретение, является создание высокопрочных обсадных и насосно-компрессорных труб для нефтяных скважин, которые обладали бы достаточно высокими прочностными характеристиками в сочетании с коррозионной стойкостью, что обеспечит возможность их эксплуатации в агрессивных средах, содержащих как H2S, так и СО2.
Поставленная задача решается путем того, что высокопрочная труба для нефтяных скважин, изготовленная из хромомолибденовой стали и подвергнутая термообработке, в отличие от прототипа изготовлена из стали, содержащей углерода 0,1-0,35 мас.%, хрома 1,0-6,0 мас.%, молибдена 0,4-1,0 мас.%, подвергнута нормализации и двойному отпуску, характеризуется следующими механическими свойствами: временное сопротивление σв - не менее 690 МПа, предел текучести σт - не менее 570 МПа, относительное удлинение δ - не менее 20%, ударная вязкость KCV при температуре -50°С - не менее 70 Дж/см2 и при этом обладает стойкостью к СКРН и углекислотной коррозии.
Технический результат - обеспечение высокой прочности в совокупности с коррозионной стойкостью достигается при осуществлении заявляемого изобретения за счет следующего. Термическая обработка предлагаемых труб из углеродистой стали, легированной хромом и молибденом в указанных количествах, осуществляется в три стадии - нормализация, первый отпуск, второй отпуск. При этом первый отпуск (вторая стадия термообработки) служит для формирования в структуре стали мелких рекристаллизованных зерен феррита и обеспечивает полное растворение легирующих элементов в твердом растворе. На третьей стадии термообработки - повторном отпуске - происходит формирование в структуре стали равномерно распределенных мелкодисперсных карбидов Мо2С, которые являются «ловушками» атомарного водорода Н+, препятствующими его скоплению по границам зерен и охрупчиванию стали. Это улучшает прочностные характеристики труб и делает их стойкими к СКРН. Кроме того, достаточно неожиданным техническим результатом, который нельзя было предвидеть, располагая известными из уровня техники сведениями, оказалось значительное повышение вязкопластических характеристик стали, что обеспечивает хладостойкость предложенных труб и возможность их эксплуатации в условиях Крайнего Севера. При этом содержание углерода в указанном интервале значений достаточно для получения необходимых прочностных показателей труб. Известно также, что стойкость к углекислотной коррозии обеспечивается в основном за счет наличия хрома в составе стали. С учетом проведенных исследований в средах с концентрацией СO2 до 300 ppm рекомендуется использовать данные трубы, изготовленные из стали с содержанием хрома 1,0-2,0 мас.%; в средах с концентрацией СO2 300-1200 ppm - трубы из стали с содержанием хрома 2,0-3,0 мас.%, а в средах с концентрацией СO2 выше 1200 ppm - трубы, изготовленные из стали, содержащей 3,0-6,0 мас.% хрома. При содержании хрома в стали менее 1,0 мас.% не обеспечивается стойкость труб к углекислотной коррозии, а при содержании хрома свыше 6,0 мас.% ухудшается стойкость труб к СКРН. Трубы, изготовленные из стали с содержанием молибдена менее 0,4 мас.%, не обладают хладостойкостью, а при содержании молибдена свыше 1,0 мас.% также снижается стойкость труб к СКРН.
Таким образом, заданные пределы по содержанию легирующих элементов и указанный режим термообработки труб обеспечивают полный комплекс требуемых эксплуатационных характеристик обсадных и насосно-компрессорных труб, предназначенных для использования в агрессивных средах, содержащих сероводород и углекислый газ. Подобная совокупность свойств не была обнаружена у известных из уровня техники аналогов.
Сущность заявляемого изобретения и обеспечиваемый им технический результат поясняются конкретным примером и данными проведенных исследований, представленными в таблице.
Были изготовлены насосно-компрессорные трубы 75×5,5, которые затем подвергались нормализации с нагревом до температур Аc3+(20-50°С), первому и второму отпуску с охлаждением на воздухе.
Из сопоставления результатов оценки комплекса характеристик исследованных труб (см. табл., варианты 2а и 2б, 3а и 3б, 4а и 4б, а также показатели прототипа) следует, что совокупность состава стали и режимов термообработки труб обеспечивает при сохранении необходимых прочностных показателей и стойкости к углекислотной коррозии значительное повышение стойкости к СКРН и хладостойкость. Так например, трубы, изготовленные из стали производства Оскольского электромеханического комбината и подвергнутые нормализации и двойному отпуску (вариант 4б), характеризуются следующими свойствами: временное сопротивление σв - 760 МПа, предел текучести σт - 623 МПа, относительное удлинение δ - 26%, ударная вязкость KCV при температуре -50°С - не менее 176 Дж/см2 и при этом коэффициент интенсивности напряжений в вершине трещины Kissc равен - 34 MПa·мl/2, а скорость коррозии в СO2-содержащей среде составляет 0,30 мм/год, что подтверждает достижение вышеуказанного технического результата.
название | год | авторы | номер документа |
---|---|---|---|
КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ ДЛЯ НАСОСНО-КОМПРЕССОРНЫХ И ОБСАДНЫХ ТРУБ | 2008 |
|
RU2371508C1 |
КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ ДЛЯ НАСОСНО-КОМПРЕССОРНЫХ И ОБСАДНЫХ ТРУБ | 2009 |
|
RU2414521C1 |
КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ ДЛЯ НАСОСНО-КОМПРЕССОРНЫХ И ОБСАДНЫХ ТРУБ И НЕФТЕГАЗОДОБЫВАЮЩЕГО ОБОРУДОВАНИЯ | 2010 |
|
RU2437955C1 |
Высокопрочная коррозионно-стойкая бесшовная труба из нефтепромыслового сортамента и способ ее получения | 2019 |
|
RU2719212C1 |
Труба нефтяного сортамента из коррозионно-стойкой стали мартенситного класса | 2018 |
|
RU2703767C1 |
ТРУБА БЕСШОВНАЯ НЕФТЯНОГО СОРТАМЕНТА ВЫСОКОПРОЧНАЯ В СЕРОВОДОРОДОСТОЙКОМ ИСПОЛНЕНИИ | 2016 |
|
RU2629126C1 |
КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ ДЛЯ НЕФТЕГАЗОДОБЫВАЮЩЕГО ОБОРУДОВАНИЯ | 2010 |
|
RU2437954C1 |
Бесшовная труба нефтяного сортамента из высокопрочной коррозионно-стойкой стали мартенситного класса и способ ее получения | 2021 |
|
RU2807645C2 |
ТРУБА НЕФТЯНОГО СОРТАМЕНТА ХЛАДОСТОЙКАЯ | 2013 |
|
RU2552794C2 |
КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ ДЛЯ БЕСШОВНЫХ ГОРЯЧЕКАТАНЫХ НАСОСНО-КОМПРЕССОРНЫХ И ОБСАДНЫХ ТРУБ ПОВЫШЕННОЙ ЭКСПЛУАТАЦИОННОЙ НАДЕЖНОСТИ И ТРУБЫ, ВЫПОЛНЕННЫЕ ИЗ НЕЕ | 2015 |
|
RU2594769C1 |
Изобретение относится к области нефтедобычи, в частности к обсадным и насосно-компрессорным трубам, предназначенным для эксплуатации в агрессивных средах, содержащих сероводород и углекислый газ. Труба изготовлена из хромомолибденовой стали, содержащей 0,1-0,35 мас.% углерода, 1,0-6,0 мас.% хрома, 0,4-1,0 мас.% молибдена и подвергнута нормализации и двойному отпуску. Сталь имеет временное сопротивление σв - не менее 690 МПа, предел текучести σт - не менее 570 МПа, относительное удлинение δ - не менее 20% и ударную вязкость KCV при температуре -50°С - не менее 70 Дж/см2. Обеспечивается высокая прочность труб в совокупности с хладостойкостью и стойкостью к сульфидному коррозионному растрескиванию под напряжением и углекислотной коррозией. 1 табл.
Высокопрочная труба для нефтяных скважин, изготовленная из хромомолибденовой стали и подвергнутая термообработке, отличающаяся тем, что она изготовлена из стали, содержащей 0,1-0,35 мас.% углерода, 1,0-6,0 мас.% хрома, 0,4-1,0 мас.% молибдена, подвергнута нормализации и двойному отпуску и характеризуется стойкостью к сульфидному коррозионному растрескиванию под напряжением и углекислотной коррозии при следующих механических свойствах: временное сопротивление σв не менее 690 МПа, предел текучести σт не менее 570 МПа, относительное удлинение δ не менее 20%, ударная вязкость KCV при температуре -50°С не менее 70 Дж/см2.
Кипятильник для воды | 1921 |
|
SU5A1 |
Конструкционная сталь | 1977 |
|
SU629244A1 |
Сталь | 1979 |
|
SU834224A1 |
Приспособление для точного наложения листов бумаги при снятии оттисков | 1922 |
|
SU6A1 |
Приспособление для точного наложения листов бумаги при снятии оттисков | 1922 |
|
SU6A1 |
Разборный с внутренней печью кипятильник | 1922 |
|
SU9A1 |
Разборный с внутренней печью кипятильник | 1922 |
|
SU9A1 |
Способ восстановления хромовой кислоты, в частности для получения хромовых квасцов | 1921 |
|
SU7A1 |
Приспособление для разматывания лент с семенами при укладке их в почву | 1922 |
|
SU56A1 |
Пресс для выдавливания из деревянных дисков заготовок для ниточных катушек | 1923 |
|
SU2007A1 |
Способ получения на волокне оливково-зеленой окраски путем образования никелевого лака азокрасителя | 1920 |
|
SU57A1 |
Авторы
Даты
2009-09-27—Публикация
2008-05-06—Подача