КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ ДЛЯ НАСОСНО-КОМПРЕССОРНЫХ И ОБСАДНЫХ ТРУБ Российский патент 2009 года по МПК C22C38/26 F16L9/02 

Описание патента на изобретение RU2371508C1

Изобретение относится к области металлургии, в частности к легированным сталям, предназначенным для изготовления насосно-компрессорных и обсадных труб, а также скважинного оборудования, эксплуатирующихся в агрессивных средах, содержащих сероводород и углекислый газ.

Как известно, высокопрочные обсадные и насосно-компрессорные трубы обычно изготавливают из легированной хромомолибденовой или хромоникельмолибденовой стали с применением закалки и отпуска (Трубы нефтяного сортамента. Справочник. /Под ред. А.Е.Сарояна. М.: Недра, 1987, с.304-305, 402). Например, в патенте РФ №2070585, МПК C21D 9/14 предлагается использовать для изготовления высокопрочных насосно-компрессорных и обсадных труб стали с низким содержанием углерода (менее 0,18%) и комплексным легированием хромом, марганцем, ванадием, никелем, молибденом, ниобием, алюминием.

В соответствии со стандартом Американского Нефтяного института 5CT/ISO 11960 для таких труб рекомендуется использовать, в частности, стали группы прочности L80 типа 9Сr со следующим содержанием компонентов, мас.%:

углерод не более 0,15 кремний не более 1,00 марганец 0,30- 0,60 молибден 0,90-1,10 хром 8,00-10,00 никель не более 0,50 медь не более 0,25 фосфор не более 0,02 сера не более 0,01

Данная сталь обладает стойкостью к углекислотной коррозии, но не обеспечивает необходимой стойкости стали к сульфидному коррозионному растрескиванию под напряжением (СКРН).

Наиболее близкой к предлагаемой стали по совокупности существенных признаков и достигаемому результату является сталь 15×5М (Марочник сталей и сплавов. /Под ред. А.С.Зубченко. М.: «Машиностроение», 2003), имеющая следующий химический состав, мас.%:

углерод не более 0,15 кремний не более 0,50 марганец не более 0,50 хром 4,50-6,00 молибден 0,45-0,60 никель не более 0,60 медь не более 0,20 фосфор не более 0,03 сера не более 0,025

Указанная сталь имеет достаточную стойкость к сульфидному растрескиванию в сероводородсодержащей среде, но не обладает стойкостью к углекислотной и бактериальной коррозии.

Задачей, на решение которой направлено предлагаемое изобретение, является создание стали для изготовления насосно-компрессорных и обсадных труб, обеспечивающей высокий уровень их механических свойств и стойкость к коррозии в различных агрессивных средах.

Поставленная задача решается за счет того, что коррозионно-стойкая сталь для насосно-компрессорных и обсадных труб, содержащая углерод, кремний, марганец, хром, молибден, железо и неизбежные примеси, в отличие от прототипа дополнительно содержит ванадий, ниобий, алюминий и РЗМ при следующем соотношении компонентов, мас.%:

углерод не более 0,16 кремний 0,30-0,50 марганец 0,50-0,70 хром от более 3,0-6,0 молибден 0,40-1,00 ванадий 0,04-0,10 ниобий 0,04-0,10 алюминий 0,02-0,05 РЗМ 0,005-0,015 железо и неизбежные примеси остальное

При этом примеси могут содержать серы не более 0,01 мас.% и не более 0,01 мас.% фосфора.

Сущность предлагаемого изобретения и обеспечиваемый им технический результат поясняются сравнительными примерами и данными проведенных экспериментов, представленными в таблицах:

Таблица 1 - варианты химического состава стали. Таблица 2 - механические свойства. Таблица 3 - результаты испытаний на стойкость к сульфидной и углекислой коррозии. Таблица 4 - результаты испытаний на стойкость к биокоррозии (оценивается как количество клеток СВБ-бактерий в поле зрения при 3000-кратном увеличении).

Как видно из приведенных данных, предложенные состав стали и количественное содержание компонентов обеспечивают такую совокупность механических свойств стали и ее коррозионной стойкости, которая отсутствует у известных из уровня техники аналогов.

При этом следует отметить, что введение в состав стали ниобия и ванадия способствует связыванию углерода в карбиды, уменьшая выделение молибдена и хрома в структуре. Таким образом повышается количество хрома и молибдена в твердом растворе, что оказывает положительное влияние на стойкость к углекислотной коррозии, поскольку хром и молибден склонны к образованию на поверхности стали защитных аморфных фаз, повышающих коррозионную стойкость. При содержании хрома в стали менее 3,0 мас.% не обеспечивается стойкость к углекислотной коррозии, а при содержании хрома свыше 6,0 мас.% ухудшается стойкость к СКРН. Трубы, изготовленные из стали с содержанием молибдена менее 0,4 мас.%, не обладают хладостойкостью, а при содержаниимолибдена свыше 1,0 мас.% также снижается стойкость к СКРН. При содержании ванадия свыше 0,10 мас.% наблюдается значительное ухудшение свариваемости, а содержание ниобия свыше 0,10 мас.% приводит к появлению грубых карбонитридов, что негативно сказывается на стойкости стали к коррозионному растрескиванию. Введение ванадия и ниобия в количествах менее 0,04 мас.% не обеспечивает формирование в структуре стали карбонитридов ванадия и ниобия, необходимых для повышения сойкости к углекислотной коррозии за счет увеличения содержания хрома в феррите.

Введение редкоземельных металлов положительно сказывается на стойкости стали к сульфидной коррозии, т.к. они связывают серу в оксисульфиды и гидриды. Количественное содержание РЗМ обусловлено следующим: при содержании РЗМ менее 0,005 мас.% (вариант №5) их концентрация оказалась недостаточной для связывания серы в сульфиды (оксисульфиды) РЗМ, а при увеличении содержания РЗМ выше 0,015 мас.% (вариант №6) при заявленной концентрации серы не более 0,01 мас.% происходило излишнее обогащение границ зерен РЗМ, что обуславливает склонность стали к межзеренному разрушению и, следовательно, ведет к уменьшению вязкости, повышению температуры хрупковязкого перехода и снижению стойкости к СКРН.

Введение алюминия в указанном количестве достаточно для связывния растворенного кислорода в прочные оксиды. При содержании алюминия более 0,05 мас.% возможно формирование в границах кристаллов нитридов алюминия пленистых форм, охрупчивающих сталь. При содержании алюминия менее 0,02 мас.% сталь не будет являться раскисленной.

Таким образом, совокупность всех признаков предложенной стали обеспечивает высокий уровень механических свойств и стойкость к коррозии в различных агрессивных средах, что позволяет использовать ее для изготовления насосно-компрессорных, обсадных труб и скважинного оборудования, эксплуатирующихся в средах, содержащих сероводород и углекислый газ.

Таблица 1 № п/п Массовые доли элементов, % С Si Mn Cr Mo Аl V Nb PЗM 1 0,14 0,35 0,55 4,50 0,40 0,04 0,07 0,04 0,007 2 0,16 0,30 0,70 3,00 0,80 0,03 0,04 0,10 0,008 3 0,14 0,32 0,58 6,00 0,40 0,05 0,10 0,08 0,005 4 0,12 0,50 0,50 3,50 1,00 0,04 0,10 0,07 0,015 5 0,16 0,35 0,60 6,00 0,80 0,02 0,07 0,05 0,001 6 0,16 0,45 0,63 5,50 0,60 0,05 0,05 0,05 0,020 7 (прототип) 0,15 0,50 0,50 5,50 0,50 - - - - Во всех вариантах примеси содержат S=0,010 мас.%, Р=0,010 мас.%

Таблица 2 № п/п Предел прочности, σв, МПа Предел текучести, σт, МПа Ударная вязкость, KCV-60 Дж/см2 Доля вязкой составляющей в изломе, % 1 740 600 225,4 100 2 720 610 180,5 80 3 735 610 108,6 50 4 690 580 112,3 50 5 763 650 125,3 55 6 710 615 73,2 35 7(прототип) 770 659 59,8 21

Таблица 3 № п/п Стойкость к СКРН по NACE ТМ0177, метод Д, Kissc, МПа*м1/2 Скорость СO2-коррозии, Тисп 60°С, мм/год 1 35,7 0,28 2 34,5 0,34 3 30,8 0,20 4 32,3 0,30 5 25,3 0,25 6 31,4 0,32 7(прототип) 31,4 0,36

Таблица 4 № пп/п Количество клеток в поле зрения , при × 3000, шт. 1 17 2 21 3 23 4 10 5 36 6 5 7(прототип) 55

Похожие патенты RU2371508C1

название год авторы номер документа
КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ ДЛЯ НЕФТЕГАЗОДОБЫВАЮЩЕГО ОБОРУДОВАНИЯ 2010
  • Чикалов Сергей Геннадьевич
  • Тазетдинов Валентин Иреклеевич
  • Ладыгин Сергей Александрович
  • Александров Сергей Владимирович
  • Прилуков Сергей Борисович
  • Белокозович Юрий Борисович
  • Медведев Александр Павлович
  • Ярославцева Оксана Владимировна
RU2437954C1
КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ ДЛЯ НАСОСНО-КОМПРЕССОРНЫХ И ОБСАДНЫХ ТРУБ 2009
  • Денисова Татьяна Владимировна
  • Иоффе Андрей Владиславович
  • Ревякин Виктор Анатольевич
  • Тазетдинов Валентин Иреклеевич
  • Тетюева Тамара Викторовна
  • Трифонова Елена Александровна
  • Фазылов Шамиль Сайнуллович
  • Юдин Павел Евгеньевич
RU2414521C1
Высокопрочная коррозионно-стойкая бесшовная труба из нефтепромыслового сортамента и способ ее получения 2019
  • Александров Сергей Владимирович
  • Лаев Константин Анатольевич
  • Щербаков Игорь Викторович
  • Девятерикова Наталья Анатольевна
  • Ошурков Георгий Леонидович
  • Харлашин Александр Николаевич
RU2719212C1
СТАЛЬ 2007
  • Луценко Андрей Николаевич
  • Немтинов Александр Анатольевич
  • Голованов Александр Васильевич
  • Ефимов Семен Викторович
  • Филатов Николай Владимирович
  • Хорева Анна Александровна
  • Мальцев Андрей Борисович
  • Рослякова Наталья Евгеньевна
  • Князькин Сергей Александрович
  • Ревякин Виктор Анатольевич
  • Иоффе Андрей Владиславович
  • Тетюева Тамара Викторовна
  • Денисова Татьяна Владимировна
RU2361958C2
КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ ДЛЯ НАСОСНО-КОМПРЕССОРНЫХ И ОБСАДНЫХ ТРУБ И НЕФТЕГАЗОДОБЫВАЮЩЕГО ОБОРУДОВАНИЯ 2010
  • Чикалов Сергей Геннадьевич
  • Тазетдинов Валентин Иреклеевич
  • Ладыгин Сергей Александрович
  • Александров Сергей Владимирович
  • Прилуков Сергей Борисович
  • Белокозович Юрий Борисович
  • Медведев Александр Павлович
  • Ярославцева Оксана Владимировна
RU2437955C1
АЗОТСОДЕРЖАЩАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ ДЛЯ ИЗГОТОВЛЕНИЯ НЕФТЕГАЗОПРОВОДНЫХ ТРУБ 2011
  • Иоффе Андрей Владиславович
  • Тетюева Тамара Викторовна
  • Ревякин Виктор Анатольевич
  • Трифонова Елена Александровна
  • Мовчан Михаил Александрович
RU2460822C1
КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ ДЛЯ БЕСШОВНЫХ ГОРЯЧЕКАТАНЫХ НАСОСНО-КОМПРЕССОРНЫХ И ОБСАДНЫХ ТРУБ ПОВЫШЕННОЙ ЭКСПЛУАТАЦИОННОЙ НАДЕЖНОСТИ И ТРУБЫ, ВЫПОЛНЕННЫЕ ИЗ НЕЕ 2015
  • Клачков Александр Анатольевич
  • Пышминцев Игорь Юрьевич
  • Лубе Иван Игоревич
  • Тихонцева Надежда Тахировна
  • Битюков Сергей Михайлович
  • Костицына Ирина Валерьевна
  • Жукова Светлана Юльевна
  • Ануфриев Николай Петрович
  • Лаев Константин Анатольевич
  • Софрыгина Ольга Андреевна
  • Корчагина Ирина Викторовна
RU2594769C1
ТРУБА БЕСШОВНАЯ НЕФТЯНОГО СОРТАМЕНТА ВЫСОКОПРОЧНАЯ В СЕРОВОДОРОДОСТОЙКОМ ИСПОЛНЕНИИ 2016
  • Гагаринов Вячеслав Алексеевич
  • Тихонцева Надежда Тахировна
  • Засельский Евгений Михайлович
  • Жукова Светлана Юльевна
  • Мануйлова Ирина Ивановна
  • Софрыгина Ольга Андреевна
  • Пышминцев Игорь Юрьевич
  • Веселов Игорь Николаевич
RU2629126C1
Бесшовная труба нефтяного сортамента из высокопрочной коррозионно-стойкой стали мартенситного класса и способ ее получения 2021
  • Александров Сергей Владимирович
  • Лаев Константин Анатольевич
  • Нурмухаметова Марианна Рашидовна
  • Щербаков Игорь Викторович
  • Девятерикова Наталья Анатольевна
  • Ошурков Георгий Леонидович
  • Маковецкий Александр Николаевич
RU2807645C2
СПОСОБ ИЗГОТОВЛЕНИЯ КОРРОЗИОННО-СТОЙКИХ НАСОСНО-КОМПРЕССОРНЫХ ТРУБ 2011
  • Иоффе Андрей Владиславович
  • Тетюева Тамара Викторовна
  • Трифонова Елена Александровна
  • Суворов Павел Вячеславович
  • Денисова Татьяна Владимировна
  • Ревякин Виктор Анатольевич
RU2454468C1

Реферат патента 2009 года КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ ДЛЯ НАСОСНО-КОМПРЕССОРНЫХ И ОБСАДНЫХ ТРУБ

Изобретение относится к области металлургии, а именно к легированным сталям, предназначенным для изготовления насосно-компрессорных и обсадных труб, а также скважинного оборудования, эксплуатирующихся в агрессивных средах, содержащих сероводород и углекислый газ. Сталь содержит углерод, кремний, марганец, хром, молибден, ванадий, ниобий, алюминий, РЗМ, железо и неизбежные примеси при следующем соотношении компонентов, мас.%: углерод не более 0,16, кремний 0,30-0,50, марганец 0,50-0,70, хром от более 3,0-6,0, молибден 0,40-1,00, ванадий 0,04-0,10, ниобий 0,04-0,10, алюминий 0,02-0,05, РЗМ 0,005-0,015, железо и неизбежные примеси - остальное. В качестве неизбежных примесей сталь содержит не более 0,01 мас.% серы и не более 0,01 мас.% фосфора. Повышаются механические свойства и стойкость к углекислотной коррозии, сульфидному коррозионному воздействию под напряжением и биокоррозии. 1 з.п. ф-лы, 4 табл.

Формула изобретения RU 2 371 508 C1

1. Коррозионно-стойкая сталь для насосно-компрессорных и обсадных труб, содержащая углерод, кремний, марганец, хром, молибден, железо и неизбежные примеси, отличающаяся тем, что она дополнительно содержит ванадий, ниобий, алюминий и РЗМ при следующем соотношении компонентов, мас.%:
углерод не более 0,16 кремний 0,30-0,50 марганец 0,50-0,70 хром от более 3,0-6,0 молибден 0,40-1,00 ванадий 0,04-0,10 ниобий 0,04-0,10 алюминий 0,02-0,05 РЗМ 0,005-0,015 железо и неизбежные примеси остальное

2. Коррозионно-стойкая сталь по п.1, отличающаяся тем, что неизбежные примеси содержат не более 0,01 мас.% серы и не более 0,01 мас.% фосфора.

Документы, цитированные в отчете о поиске Патент 2009 года RU2371508C1

CN 1487112 А, 07.07.2004
СТАЛЬ ДЛЯ БЕСШОВНЫХ ТРУБЧАТЫХ ИЗДЕЛИЙ, ПРЕДНАЗНАЧЕННЫХ ДЛЯ ИСПОЛЬЗОВАНИЯ ПРИ ВЫСОКОЙ ТЕМПЕРАТУРЕ 2002
  • Арбаб Алиреза
  • Лефевр Брюно
  • Вайан Жан-Клод
RU2293786C2
СТАЛЬ ПОВЫШЕННОЙ КОРРОЗИОННОЙ СТОЙКОСТИ И БЕСШОВНЫЕ ТРУБЫ, ВЫПОЛНЕННЫЕ ИЗ НЕЕ 2002
  • Кузнецов В.Ю.
  • Печерица А.А.
  • Кузнецова Е.Я.
  • Лубе И.И.
  • Фролочкин В.В.
  • Лашкуль Н.Н.
  • Уткин Ю.Н.
  • Родионова И.Г.
  • Бакланова О.Н.
  • Быков А.А.
  • Столяров В.И.
  • Реформатская И.И.
  • Порецкий С.В.
  • Рыбкин А.Н.
RU2243284C2
ТРУБА ДЛЯ НЕФТЕГАЗОПРОДУКТОПРОВОДОВ И СПОСОБ ЕЕ ПРОИЗВОДСТВА 2000
  • Дуб В.С.
  • Лобода А.С.
  • Головин С.В.
  • Болотов А.С.
  • Тарлинский В.Д.
  • Дуб А.В.
  • Комаров А.И.
  • Чикалов С.Г.
  • Романцов И.А.
  • Роньжин А.И.
  • Ламухин А.М.
  • Марков С.И.
  • Дементьев А.В.
  • Тахаутдинов Р.С.
RU2180691C1
RU 2070585 C1, 20.12.1996
Конструкционная сталь 1977
  • Голованенко Сергей Александрович
  • Зикеев Владимир Николаевич
  • Попова Людмила Васильевна
  • Шишканов Юрий Григорьевич
  • Литвиненко Денис Ануфриевич
  • Афанасьев Владимир Петрович
  • Григорьева Галина Ильинична
  • Серегин Станислав Иванович
  • Янковский Владимир Михайлович
  • Якубович Юрий Васильевич
  • Коробецкий Василий Николаевич
  • Алиев Идрис Пашаевич
  • Рулев Лев Васильевич
  • Мошкевич Евгений Исаевич
SU629244A1
Способ окисления боковых цепей ароматических углеводородов и их производных в кислоты и альдегиды 1921
  • Каминский П.И.
SU58A1
Пломбировальные щипцы 1923
  • Громов И.С.
SU2006A1
US 6217676 B1, 17.04.2001
US 6248187 B1, 19.06.2001
Способ бурения скважин и устройство для его осуществления 1977
  • Бикбулатов Ирек Камильевич
  • Жидовцев Николай Александрович
  • Матвеев Григорий Иванович
  • Гинзбург Эдуард Самуилович
  • Клименко Тамара Дмитриевна
  • Иванов Виктор Прокофьевич
SU791884A1

RU 2 371 508 C1

Авторы

Денисова Татьяна Владимировна

Иоффе Андрей Владиславович

Ревякин Виктор Анатольевич

Тетюева Тамара Викторовна

Титлова Ольга Ивановна

Трифонова Елена Александровна

Марков Дмитрий Всеволодович

Медведев Александр Павлович

Прилуков Сергей Борисович

Ладыгин Сергей Александрович

Белокозович Юрий Борисович

Александров Сергей Владимирович

Даты

2009-10-27Публикация

2008-06-04Подача