СПОСОБ ОПРЕДЕЛЕНИЯ ДЛИНЫ И КОРРОЗИОННОГО СОСТОЯНИЯ ВЕРТИКАЛЬНЫХ ЭЛЕМЕНТОВ ЗАЗЕМЛЯЮЩЕГО УСТРОЙСТВА Российский патент 2009 года по МПК G01B17/00 G01N29/04 

Описание патента на изобретение RU2368870C1

Изобретение относится к контрольно-измерительной технике и может быть использовано для определения длины и коррозионного состояния вертикальных элементов заземляющего устройства объектов энергоснабжения и тяговых подстанций железнодорожного транспорта.

Известен визуальный способ контроля заземляющих устройств электроустановок. Для этого производится вскрытие грунта и инструментальная оценка состояния заземлителей и оценка степени коррозии контактных соединений [1, 2].

Известен способ определения коррозионного состояния элементов заземляющего устройства, находящихся в земле, согласно которому локальные коррозионные повреждения заземляющих проводников выявляются при осмотре (в основном со вскрытием грунта). Количественная оценка степени коррозионного износа производится выборочно по участкам контролируемого элемента заземляющего устройства путем измерения характерных размеров, зависящих от вида коррозии [3].

Недостатками известных способов являются большая трудоемкость и значительные временные затраты, учитывая, что вертикальные элементы заземляющего устройства обычно находятся на глубине от 0,7 до 1,5 м, а их средняя длина от 3 до 5 м и более.

Наиболее близким к предлагаемому является способ определения наличия вертикальных элементов контура заземления, включающий перемещение датчика по трассе горизонтальных элементов контура заземления, измерение на территории электроустановки магнитного поля помехи, фиксацию на трассе горизонтальных элементов контура заземления наименьшего значения вертикальной составляющей магнитного поля помехи, соответствующего реальному месту нахождения вертикального элемента контура заземления [4].

Недостатком этого способа является отсутствие возможности определение длины и коррозионного состояния вертикальных элементов.

Цель изобретения - снижение трудоемкости и временных затрат при определении длины и коррозионного состояния вертикальных элементов заземляющего устройства за счет уменьшения объема земляных работ.

Для достижения этой цели в предлагаемом способе определения длины и коррозионного состояния вертикального элемента заземляющего устройства, включающем перемещение датчика по трассе горизонтальных элементов контура заземления, измерение на территории электроустановки магнитного поля помехи, фиксацию на трассе горизонтальных элементов контура заземления наименьшего значения вертикальной составляющей магнитного поля помехи, вскрытие грунта до торцевой части вертикального элемента, установку на предварительно очищенную торцевую поверхность вертикального элемента прямого ультразвукового преобразователя низкочастотного ультразвукового дефектоскопа, работающего по принципу эхо-импульсного метода, определение по развертке дефектоскопа (так называемому А-скану) времени между зондирующим импульсом и донным импульсом, длину вертикального элемента определяют по соотношению

L=C·t/2,

где t - время прохождения импульса ультразвука через вертикальный элемент в обоих направлениях (промежуток времени между пиком зондирующего импульса и пиком донного сигнала, отраженного от дна объекта контроля, определяемый по развертке дефектоскопа);

С - скорость распространения ультразвука в среде вертикального элемента, зависит от свойств материала.

Коррозионное состояние вертикального элемента оценивается по наличию и величине дополнительных пиков в развертке отраженного от противоположного торца вертикального элемента ультразвукового сигнала при его продольном прозвучивании. Причем величину коррозионного повреждения (дефекта) качественно определяют по амплитуде эхо-сигнала, характеризующей отражательную способность дефекта и пропорциональной его эквивалентной площади, координаты дефекта (расстояние от верхнего торца вертикального элемента) определяют по соотношению:

r=C·td/2,

где td - время прохождения импульса ультразвука до места дефекта в обоих направлениях (определяемый по развертке дефектоскопа промежуток времени между пиком зондирующего импульса и пиком, соответствующим эхо-сигналу от дефекта);

С - скорость распространения ультразвука в среде вертикального элемента, зависит от свойств материала.

На чертеже представлена функциональная схема устройства, реализующая измерения длины и коррозионного состояния по данному способу.

Устройство работает следующим образом.

Синхронизатор 1 вырабатывает короткие электрические импульсы через определенные промежутки времени. Эти импульсы запускают генератор зондирующих импульсов 2 и генератор развертки 3. Генератор зондирующих импульсов вырабатывает либо радио-, либо видеоимпульсы, которые поступают на преобразователь 4 и превращаются в нем в упругие колебания. Эти колебания, распространяясь в вертикальном элементе заземляющего устройства 5, образуют волны. Волны отражаются от препятствий на своем пути, таких как локальные коррозионные повреждения 6 и донная поверхность. Отраженные импульсы возвращаются на преобразователь и превращаются в электрические сигналы. Принятые сигналы после усиления и детектирования в приемно-усилительном блоке 7 подаются на Y-отклоняющие пластины электронно-лучевой трубки 8 или другого индикатора. Генератор развертки 3 вырабатывает напряжение, зависящее от времени по пилообразному закону. Это напряжение поступает на Х-отклоняющие пластины электронно-лучевой трубки. На экране электронно-лучевой трубки 8 видны линия развертки (горизонтальная линия в нижней части экрана) и один или несколько пиков. Высокий пик в левой, начальной части экрана «З» соответствует зондирующему импульсу. Пик «Д» соответствует донному сигналу, отраженному от дна объекта контроля. Пик «ДЕФ» соответствует эхо-сигналу от дефекта (например, коррозионного повреждения). Амплитуда эхо-сигнала А характеризует отражательную способность дефекта, она пропорциональна его эквивалентной площади, по величине амплитуды А можно качественно определить величину коррозионного повреждения. Время прихода эхо-сигнала t2 позволяет рассчитать длину вертикального элемента, t1 - координаты дефекта. Длина вертикального элемента определяется по соотношению

L=C·t2/2,

где t2 - время прохождения импульса ультразвука через вертикальный элемент в обоих направлениях (промежуток времени между пиком зондирующего импульса «З» и пиком «Д» донного сигнала, отраженного от дна объекта контроля, определяемый по развертке дефектоскопа);

С - скорость распространения ультразвука в среде вертикального элемента, зависит от свойств материала.

Коррозионное состояние вертикального элемента оценивается по наличию и величине дополнительных пиков в развертке отраженного от противоположного торца вертикального элемента ультразвукового сигнала при его продольном прозвучивании. Причем величину коррозионного повреждения (дефекта) качественно определяют по амплитуде эхо-сигнала А, характеризующей отражательную способность дефекта и пропорциональной его эквивалентной площади, координаты дефекта (расстояние от верхнего торца вертикального элемента) определяют по соотношению

к=C·t1/2,

где t1 - время прохождения импульса ультразвука до места дефекта в обоих направлениях (определяемый по развертке дефектоскопа промежуток времени между пиком зондирующего импульса «З» и пиком «ДЕФ», соответствующим эхо-сигналу от дефекта);

С - скорость распространения ультразвука в среде вертикального элемента, зависит от свойств материала.

В данном способе производится определение длины и коррозионного состояния вертикальных элементов заземляющего устройства с помощью ультразвукового дефектоскопа, что приводит к уменьшению объема земляных работ. Следовательно, снижаются трудоемкость и временные затраты при определении длины и коррозионного состояния вертикальных элементов заземляющего устройства.

Источники информации

1. Правила технической эксплуатации электроустановок потребителей: утв. 13.01.03. - СПб.: Деан, 2003, 301 с.

2. Инструкция по заземлению устройств электроснабжения на электрифицированных железных дорогах ЦЭ-191 от 10.06.1993 г. - М.: Транспорт, 1993, 68 с.

3. РД-153-34.0-20.525-00. Методические указания по контролю состояния заземляющих устройств электроустановок. - М.: СПО ОРГРЭС, 2000, 64 с.

4. Патент 2223510, Россия, МПК7 G01R 27/20. Способ определения наличия вертикальных элементов контура заземления / Кандаев В.А., Свешникова Н.Ю., Кандаев А.В.

Похожие патенты RU2368870C1

название год авторы номер документа
СПОСОБ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ ЦИЛИНДРИЧЕСКИХ ИЗДЕЛИЙ 1999
  • Арутюнян Ю.К.
  • Бабичев В.А.
  • Казаченко А.Т.
  • Молотков С.Л.
  • Марков А.А.
  • Пименов И.В.
RU2149393C1
СПОСОБ УЛЬТРАЗВУКОВОГО НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ ВОДОВОДОВ ГИДРОТЕХНИЧЕСКИХ ОБЪЕКТОВ 2015
  • Соколов Игорь Вячеславович
  • Качанов Владимир Климентьевич
  • Федоров Максим Борисович
  • Концов Роман Валерьевич
  • Караваев Михаил Алексеевич
  • Синицын Алексей Алексеевич
RU2613624C1
Способ оценки работоспособности дефектоскопических средств при высокоскоростном контроле рельсов 2021
  • Марков Анатолий Аркадиевич
  • Максимова Екатерина Алексеевна
RU2753810C1
Ультразвуковой дефектоскоп 1978
  • Бирюков Сергей Борисович
  • Гаврев Валерий Сергеевич
  • Гончарук Юрий Михайлович
  • Савицкий Александр Всеволодович
SU845083A1
Способ ультразвукового контроля зоны болтовых стыков рельсов 2022
  • Марков Анатолий Аркадиевич
  • Шилов Максим Николаевич
  • Мосягин Владимир Валентинович
  • Козьяков Александр Борисович
RU2791145C1
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ РАСПРОСТРАНЕНИЯ ПРОДОЛЬНЫХ И ПОПЕРЕЧНЫХ ВОЛН В РАЗЛИЧНЫХ ТВЕРДЫХ МАТЕРИАЛАХ 1991
  • Еськов Ю.Б.
  • Бондаренко Ю.К.
  • Мельников А.С.
  • Шекеро А.Л.
RU2011192C1
УЛЬТРАЗВУКОВОЙ ДЕФЕКТОСКОП 1971
SU300823A1
Ультразвуковой иммерсионный дефектоскоп 1961
  • Аникеев Я.Ф.
  • Николаенко А.Т.
  • Теверовский В.И.
SU148573A1
СПОСОБ ИЗМЕРЕНИЯ ТОЛЩИНЫ ИЗДЕЛИЯ С ПОМОЩЬЮ УЛЬТРАЗВУКОВЫХ ИМПУЛЬСОВ 2003
  • Самокрутов А.А.
  • Козлов В.Н.
  • Шевалдыкин В.Г.
RU2231753C1
Способ ультразвуковой дефектоскопии плоских изделий 1977
  • Бордюгов Григорий Тихонович
  • Шаповалов Петр Филиппович
  • Даскал Июлий Борухович
SU896546A1

Реферат патента 2009 года СПОСОБ ОПРЕДЕЛЕНИЯ ДЛИНЫ И КОРРОЗИОННОГО СОСТОЯНИЯ ВЕРТИКАЛЬНЫХ ЭЛЕМЕНТОВ ЗАЗЕМЛЯЮЩЕГО УСТРОЙСТВА

Изобретение относится к контрольно-измерительной технике и может быть использовано для определения длины и коррозионного состояния вертикальных элементов заземляющего устройства объектов энергоснабжения и тяговых подстанций железнодорожного транспорта. Сущность: перемещают датчик по трассе горизонтальных элементов контура заземления, измеряют на территории электроустановки магнитное поле помехи, фиксируют на трассе наименьшее значение вертикальной составляющей магнитного поля помехи. Вскрывают грунт до торцевой части вертикального элемента. Устанавливают на предварительно очищенную торцевую поверхность вертикального элемента ультразвуковой преобразователь низкочастотного ультразвукового дефектоскопа. Определяют по развертке дефектоскопа длину вертикального элемента по соотношению: L=C·t/2, где t - время прохождения импульса ультразвука через вертикальный элемент в обоих направлениях, С - скорость ультразвука в среде вертикального элемента. Коррозионное состояние оценивают по наличию и величине дополнительных пиков в развертке. Величину коррозионного дефекта качественно определяют по амплитуде эхо-сигнала, координаты дефекта определяют по соотношению r=C·td/2, где td - время прохождения импульса ультразвука до места дефекта в обоих направлениях. Технический результат: снижение трудоемкости и временных затрат. 1 ил.

Формула изобретения RU 2 368 870 C1

Способ определения длины и коррозионного состояния вертикального элемента заземляющего устройства, включающий перемещение датчика по трассе горизонтальных элементов контура заземления, измерение на территории электроустановки магнитного поля помехи, фиксацию на трассе горизонтальных элементов контура заземления наименьшего значения вертикальной составляющей магнитного поля помехи, отличающийся тем, что производится вскрытие грунта до торцевой части вертикального элемента, установка на предварительно очищенную торцевую поверхность вертикального элемента прямого ультразвукового преобразователя низкочастотного ультразвукового дефектоскопа, работающего по принципу эхо-импульсного метода, определение по развертке дефектоскопа (так называемому А-скану) времени между зондирующим импульсом и донным импульсом, длину вертикального элемента определяют по соотношению:
L=C·t/2,
где t - время прохождения импульса ультразвука через вертикальный элемент в обоих направлениях (промежуток времени между пиком зондирующего импульса и пиком донного сигнала, отраженного от дна объекта контроля, определяемый по развертке дефектоскопа);
С - скорость распространения ультразвука в среде вертикального элемента, зависит от свойств материала;
коррозионное состояние вертикального элемента оценивается по наличию и величине дополнительных пиков в развертке отраженного от противоположного торца вертикального элемента ультразвукового сигнала при его продольном прозвучивании, причем величину коррозионного повреждения (дефекта) качественно определяют по амплитуде эхо-сигнала, характеризующей отражательную способность дефекта и пропорциональной его эквивалентной площади, координаты дефекта (расстояние от верхнего торца вертикального элемента) определяют по соотношению:
r=C·td/2,
где td - время прохождения импульса ультразвука до места дефекта в обоих направлениях (определяемый по развертке дефектоскопа промежуток времени между пиком зондирующего импульса и пиком, соответствующим эхо-сигналу от дефекта);
С - скорость распространения ультразвука в среде вертикального элемента, зависит от свойств материала.

Документы, цитированные в отчете о поиске Патент 2009 года RU2368870C1

СПОСОБ ОПРЕДЕЛЕНИЯ НАЛИЧИЯ ВЕРТИКАЛЬНЫХ ЭЛЕМЕНТОВ КОНТУРА ЗАЗЕМЛЕНИЯ 2002
  • Кандаев В.А.
  • Свешникова Н.Ю.
  • Кандаев А.В.
RU2223510C1
СПОСОБ ДИАГНОСТИКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ "ОТС-1" МЕТАЛЛИЧЕСКИХ ИНЖЕНЕРНЫХ КОНСТРУКЦИЙ И КОММУНИКАЦИЙ ЗДАНИЯ 2005
  • Фелицына Лидия Алексеевна
RU2295123C1
СПОСОБ ОПРЕДЕЛЕНИЯ КОРРОЗИОННОГО СОСТОЯНИЯ МЕТАЛЛИЧЕСКИХ ЭЛЕМЕНТОВ АНКЕРНОГО УЗЛА ОТТЯЖЕК ОПОР 2005
  • Тарасов Александр Георгиевич
RU2299421C2
Способ и приспособление для нагревания хлебопекарных камер 1923
  • Иссерлис И.Л.
SU2003A1

RU 2 368 870 C1

Авторы

Кандаев Василий Андреевич

Авдеева Ксения Васильевна

Котельников Александр Владимирович

Даты

2009-09-27Публикация

2008-04-16Подача