СТАЛЬ С ПОНИЖЕННОЙ ПРОКАЛИВАЕМОСТЬЮ ДЛЯ ВИНТОВЫХ ПРУЖИН С ДИАМЕТРОМ ПРУТКОВ 17-23 мм И ПРУЖИНА, ИЗГОТОВЛЕННАЯ ИЗ НЕЕ Российский патент 2009 года по МПК C22C38/42 B61G9/08 B61G11/04 F16F1/02 

Описание патента на изобретение RU2370566C2

Изобретение относится к области металлургии и машиностроения, в частности к пружинно-рессорным сталям, и может быть использовано для изготовления крупных высоконагруженных пружин, подверженных высоким нагрузкам, в частности, для изготовления винтовых пружин подвижного состава железнодорожного транспорта.

В процессе эксплуатации рессорных пружин в вагонах железнодорожного транспорта они подвергаются длительным деформационным нагружениям, вертикальным и горизонтальным колебаниям, воздействию атмосферы в различных климатических зонах.

Поэтому к материалам, используемым для изготовления рессорных пружин, предъявляется ряд специальных требований. Они должны обеспечивать высокое сопротивление малым пластическим деформациям и обладать высокой релаксационной стойкостью. Стабильность указанных характеристик в процессе эксплуатации обеспечивает точность и надежность работы пружин и упругих элементов.

Наиболее близким аналогом для заявленной стали и пружины, изготовленной из нее, является пружинно-рессорная сталь с пониженной прокаливаемостью для подвижного состава железнодорожного транспорта и пружина, изготовленная из нее, раскрытые в ГОСТ 1050-88. Сталь для пружин 58(55ПП) /1/. Сталь содержит, мас.%: углерод 0,55-0,63, кремний 0,10-0,30, марганец ≤0,20, хром ≤0,15, никель ≤0,25, медь ≤0,25, железо - остальное.

Недостатком известной стали и изготовленных из нее пружин является отсутствие стабильности получаемых в процессе термической обработки механических свойств, микроструктуры (в том числе сталь /1/ характеризуется крупным зерном) и твердости по сечению прутка, а соответственно, и стабильности релаксационной стойкости и циклической долговечности пружин. Отсутствие стабильности указанных характеристик при термической обработке пружин из известной марки стали не позволяет автоматизировать процесс производства и добиться его высокой производительности.

Задачей, на решение которой направлено изобретение, является разработка состава пружинно-рессорной стали с пониженной прокаливаемостью для винтовых пружин подвижного состава железнодорожного транспорта с диаметром прутков 17-23 мм, обладающей высокими и стабильными эксплуатационными характеристиками.

Техническим результатом является обеспечение стабильности свойств стали с пониженной прокаливаемостью и пружин, изготовленных из нее, после термической обработки, что позволит автоматизировать процесс производства в крупном масштабе, увеличить уровень эксплуатационных характеристик, в частности механических свойств, релаксационной стойкости, циклической долговечности и коррозионной стойкости.

Технический результат достигается тем, что предложена сталь с пониженной прокаливаемостью для винтовых пружин с диаметром прутков 17-23 мм для подвижного состава железнодорожного транспорта, содержащая углерод, кремний, марганец, хром, никель, медь, железо и дополнительно содержащая алюминий, азот, серу, фосфор, при следующем соотношении компонентов, мас.%:

углерод 0,55-0,63 кремний 0,10-0,35 марганец ≤0,20 алюминий 0,02-0,06 азот 0,004-0,016 сера ≤0,025 фосфор ≤0,020 хром 0,10-0,20 никель 0,15-0,20 медь 0,15-0,20 железо остальное,

и имеющая балл аустенитного зерна 11-13 и структуру мелкоигольчатого мартенсита отпуска и сорбита после объемно-поверхностной закалки и отпуска.

Также технический результат достигается тем, что пружина с диаметром прутков 17-23 мм, изготовленная из стали предложенного состава, после объемно-поверхностной закалки и отпуска имеет в сердцевине структуру сорбита, а на поверхности структуру мелкоигольчатого мартенсита отпуска.

Предложенное сочетание легирующих элементов и ограничение по содержанию примесных элементов позволяет получить исходную однородную, мелкозернистую структуру стали с пониженной прокаливаемостью, что обеспечивает после объемно-поверхностной закалки и отпуска получение оптимальных для пружин механических свойств, в частности прочности, предела текучести и предела упругости.

Размер зерна в стали существенно влияет на ее свойства. Так крупное зерно снижает прочность, пластичность и порог хладноломкости, а также коррозионную стойкость, повышает склонность к хрупкому разрушению стали и увеличивает прокаливаемость.

Заявленный интервал содержания углерода обеспечивает необходимые прочность и прокаливаемость. При содержании менее 0,55 мас.% не обеспечивается требуемый уровень прочности, пластичности и пружина хрупко разрушается, а при содержании свыше 0,63 мас.% образуются центры графитизации, вследствие чего снижается релаксационная стойкость и долговечность.

Кремний не только раскисляет сталь, но также упрочняет ее и повышает предел упругости, что увеличивает релаксационную стойкость. При содержании кремния менее 0,10 мас.% прочность и упругость стали становятся ниже допустимого уровня и не достигается необходимый уровень раскисления, а при содержании выше 0,35 мас.% пластичность снижается и сталь охрупчивается.

Марганец не только раскисляет сталь, но повышает ее прочность, упругость, износостойкость и долговечность. При содержании марганца свыше 0,20 мас.% увеличивается прокаливаемость, что для пружин, изготовленных из прутков предлагаемой стали диаметром 17-23 мм, приводит к увеличению глубины упрочненного слоя, снижению уровня сжимающих напряжений в упрочненном слое и, как следствие, к уменьшению долговечности пружин и повышению их чувствительности к поверхностным концентраторам напряжения.

Введение в сталь алюминия в количестве 0,02-0,06 мас.% позволяет не только раскислить, но и модифицировать сталь, в частности, за счет того, что он связывает кислород и азот в оксиды и нитриды, которые являются эффективными барьерами для роста аустенитного зерна. К тому же чрезмерное введение алюминия более 0,06 мас.% в сталь приведет к ее графитизации, что резко снизит эксплуатационную стойкость пружин, выполненных из этой стали.

Азот упрочняет сталь за счет образования нитридов алюминия, способствующих получению мелкозернистой структуры. Для связывания алюминия с получением нитрида алюминия содержание азота должно быть, по меньшей мере, 0,004 мас.%. При содержании азота свыше 0,016 мас.% излишек азота проявляется в виде пузырьков на поверхности получаемого слитка, что снижает механические свойства, затрудняет дальнейшую его обработку.

Фосфор, выделяясь по границам зерен, снижает ударную вязкость, вследствие чего сталь хрупко разрушается за счет ослабления межзеренного сцепления. Поэтому содержание фосфора ограничено 0,020 мас.%.

Сера присутствует в стали в виде тугоплавкого сульфидного включения MnS, приводящего к анизотропии механических свойств. Поэтому содержание серы ограничено 0,025 мас.%.

Микролегирование медью основано на том, что она кристаллизуется в последнюю очередь, концентрируясь по границам зерен, снижая вероятность пережога. Поэтому увеличивается пластичность стали. К тому же медь увеличивает коррозионную стойкость стали, но ее действие на коррозионную стойкость не ощутимо при содержании менее 0,15 мас.%. При содержании меди свыше 0,20 мас.% хрупкие фазы меди приведут к растрескиванию по границам зерен при деформации.

Микролегирование хромом основано на том, что он участвует в твердорастворном упрочнении, однако при содержании менее 0,10 мас.% прочность и твердость стали становятся менее допустимого предела для заданного класса сталей, а при содержании свыше 0,20 мас.% образуется фаза FeCrx, снижающая пластичность и приводящая к разрушению при деформации.

Микролегирование никелем основано на твердорастворном упрочнении и повышении коррозионной стойкости, однако на указанные характеристики никель практически не влияет при содержании менее 0,15 мас.%, а увеличение содержания свыше 0,20 мас.% нецелесообразно из-за его дороговизны.

Стабильно получаемая при объемно-поверхностной закалке структура мелкоигольчатого мартенсита отпуска и сорбита обеспечивает требуемую твердость поверхностной зоны пружины 55-58 HRC (мелкоигольчатый мартенсит) и сердцевины 30-35 HRC (сорбит), высокую прочность пружины, эксплуатационную надежность и долговечность. Структура сорбита в сердцевине пружины более благоприятна, чем трооститная структура, наблюдаемая в большинстве рессорно-пружинных сталей, поскольку имеет большую прочность, пластичность и ударную вязкость, что увеличивает долговечность пружин. При этом следует отметить, что при структуре мелкоигольчатого мартенсита в поверхностном слое и сорбита в сердцевине по сечению прутка наводится благоприятная эпюра внутренних остаточных напряжений: сжимающие напряжения в поверхностном закаленном слое и растягивающие в сердцевине, что наилучшим образом отвечает нагруженности пружин в процессе эксплуатации.

Пример

Опытные плавки проводили в индукционных печах. Перед разливкой сталь раскисляли и модифицировали введением алюминия для обеспечения наследственно мелкозернистой структуры. Состав выплавляемой стали приведен ниже в табл.1. Балл аустенитного зерна составлял 11-13, что свидетельствует о получении наследственно мелкозернистой структуры.

Таблица 1 С Si Mn Al N S P Cr Ni Cu Fe 1 0,55 0,22 0,20 0,021 0,016 0,014 0,010 0,07 0,15 0,15 Ост. 2 0,57 0,24 0,18 0,023 0,015 0,015 0,012 0,11 0,16 0,16 Ост.

Партию, состоящую из 30 образцов, изготавливали из горячекатаных прутков диаметром 17 и 23 мм, которые были подвергнуты термической обработке: объемно-поверхностная закалка от температуры нагрева 900°С, отпуск при 180°С в течение 1,5 часов.

Для определения прокаливаемости проводили закалку, прутки разрезали, исследовали структуру и измеряли твердость. Толщина закаленного слоя составила 2,5-4,5 мм (для ⌀ 17 мм) и 3,5-6,0 мм (для ⌀ 23 мм), твердость поверхности 64-65 HRC (для ⌀ 17 мм) и 64-65 HRC (для ⌀ 23 мм), твердость сердцевины 30-32 HRC (для ⌀ 17 мм) и 28-30 HRC (для ⌀ 23 мм), критическая скорость охлаждения: 180°С/с (для ⌀ 17 мм) и 180-290°С/с (для ⌀ 23 мм).

После отпуска при 180°С в течение 1,5 часов твердость прутков снизилась до следующих значений и составила для партии образцов с диаметрами 17 и 23 мм: в поверхности 56-59 HRC (для ⌀ 17 мм) и 56-59 HRC (для ⌀ 23 мм), в сердцевине 26-29 HRC (для ⌀ 17 мм) и 24-27 HRC (для ⌀ 23 мм).

Структура поверхностного слоя после объемно-поверхностной закалки и отпуска во всех образцах представляла собой мелкоигольчатый мартенсит отпуска, а сердцевины - сорбит.

Испытания на механические свойства проводили на цилиндрических образцах с диаметром 6 мм и расчетной длиной 30 мм, изготовленных из прутков предлагаемой пружинно-рессорной стали в состоянии поставки. Моделирование механических свойств упрочненного слоя, получаемого в пружинах после объемно-поверхностной закалки и отпуска, осуществляли путем закалки образцов указанных размеров с предварительным нагревом в соляной ванне до температуры закалки 900°С и интенсивным охлаждением быстродвижущимся потоком воды в специальном закалочном устройстве.

Для определения механических свойств сердцевины цилиндрические образцы указанных размеров изготавливали из сердцевины прутков предлагаемой пружинно-рессорной стали после объемно-поверхностной закалки и отпуска.

Механические свойства исследованных образцов предлагаемой пружинно-рессорной стали в состоянии поставки составляют: прочность стали σв - 750 МПа, предел текучести σ0,2 - 400 МПа, сопротивление малым пластическим деформациям (предел упругости) σ0,05 - 300-350 МПа. Значения указанных свойств в состоянии поставки положительно характеризуют предлагаемую пружинно-рессорную сталь с точки зрения обрабатываемости.

После закалки, близкой по режиму к объемно-поверхностной закалке, и отпуска механические свойства предлагаемой стали исследуемых образцов, соответствующие свойствам упрочненного слоя пружины, составляют: прочность стали σв - 2300 МПа, предел текучести σ0,2 - 2000 МПа, сопротивление малым пластическим деформациям (предел упругости) σ0,05 - 1650-1750 МПа.

Механические свойства сердцевины прутка предлагаемой пружинно-рессорной стали исследуемых образцов после объемно-поверхностной закалки и отпуска составляют: прочность стали σв - 1100 МПа, предел текучести σ0,2 - 800 МПа, сопротивление малым пластическим деформациям (предел упругости) σ0,05 - 750 МПа.

Стабильное обеспечение описанного уровня механических свойств в поверхности и в сердцевине пружин является отличительной особенностью предлагаемой пружинно-рессорной стали. Такое сочетание свойств по сечению прутка пружины означает получение большей прочности, релаксационной стойкости и циклической долговечности как самих прутков предлагаемой пружинно-рессорной стали, так и пружин, изготовленных из нее.

Релаксационная стойкость прутков предлагаемой пружинно-рессорной стали исследуемых образцов после объемно-поверхностной закалки и отпуска, определенная при статических испытаниях прутков на трехточечный изгиб с регистрацией значений пластической деформации, характеризуется следующими показателями: предел текучести σ0,2 - 2530 МПа, предел упругости σ0,05 - 1860 МПа, предел пропорциональности σ0,01 - 1200 МПа.

Релаксационная стойкость самих пружин, изготовленных из прутков предлагаемой пружинно-рессорной стали исследуемых образцов, после объемно-поверхностной закалки и отпуска, оцененная по величине остаточной деформации, составляет 0,6 мм (разница между значениями высоты пружины после третьего и второго обжатия).

Циклическая долговечность, оцененная при испытаниях на трехточечный изгиб прутков предлагаемой пружинно-рессорной стали, составила 5 млн. циклов нагружения при пределе выносливости 1100-1200 МПа. Циклическая долговечность пружин, изготовленных из предложенной пружинно-рессорной стали и упрочненных объемно-поверхностной закалки, составляет 5 млн. циклов нагружения.

Испытания на коррозионную стойкость проводились в 0,5 н растворе хлорида натрия. Пассивирование стали не наблюдалось вплоть до токов коррозии, превышающих 1000 мА/см2.

В результате проведенных испытаний установлено, что указанные характеристики стали и пружин, изготовленных из нее, стабильно обеспечиваются во всем диапазоне ее химического состава для диаметров прутков 17-23 мм.

Таким образом, стабилизация структуры обеспечивается способом комплексного легирования, а ограничение содержания компонентов подобрано для эффективного взаимодействия между собой, чем достигается мелкое зерно аустенита (11-13 балл) и получаемая структура мелкоигольчатого мартенсита отпуска и сорбита (соответственно на поверхности и в сердцевине пружины), высокие эксплуатационные характеристики, в том числе релаксационная стойкость, циклическая долговечность и коррозионная стойкость.

Похожие патенты RU2370566C2

название год авторы номер документа
СТАЛЬ ДЛЯ ВИНТОВЫХ ПРУЖИН С ДИАМЕТРОМ ПРУТКОВ 27-33 мм И ПРУЖИНА, ИЗГОТОВЛЕННАЯ ИЗ НЕЕ 2007
  • Андреев Александр Петрович
  • Андреев Александр Александрович
  • Бочкарев Вячеслав Николаевич
  • Чижов Василий Алексеевич
  • Федин Владимир Михайлович
  • Борц Алексей Игоревич
  • Ушаков Борис Константинович
  • Решетников Сергей Анатольевич
  • Мулюкин Иван Степанович
  • Мацкевич Владимир Викторович
RU2370565C2
СТАЛЬ С ПОНИЖЕННОЙ ПРОКАЛИВАЕМОСТЬЮ ДЛЯ ВИНТОВЫХ ПРУЖИН С ДИАМЕТРОМ ПРУТКОВ ОТ 24 ДО МЕНЕЕ 27 ММ И ПРУЖИНА, ИЗГОТОВЛЕННАЯ ИЗ НЕЕ 2013
  • Андреев Александр Александрович
RU2568405C2
СПОСОБ ИЗГОТОВЛЕНИЯ УПРУГОЙ КЛЕММЫ ДЛЯ РЕЛЬСОВОГО СКРЕПЛЕНИЯ И УПРУГАЯ КЛЕММА 2012
  • Аксенов Юрий Николаевич
  • Богачев Андрей Юрьевич
  • Федин Владимир Михайлович
  • Вакуленко Сергей Петрович
  • Тихонов Дмитрий Петрович
  • Дьяков Александр Васильевич
  • Прокофьев Андрей Дмитриевич
RU2512695C1
АВТОМАТИЧЕСКАЯ ЛИНИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ПРУЖИН 2007
  • Андреев Александр Петрович
  • Андреев Александр Александрович
  • Бочкарев Вячеслав Николаевич
  • Чижов Василий Алексеевич
  • Федин Владимир Михайлович
  • Борц Алексей Игоревич
  • Ушаков Борис Константинович
RU2370549C2
РЕССОРНЫЙ ЛИСТ ВЫСОКОЙ ПРОЧНОСТИ И ДОЛГОВЕЧНОСТИ 1999
  • Шепеляковский К.З.
  • Лобозов В.П.
  • Кузнецов А.А.
  • Никитин С.И.
  • Хамидуллин И.Ю.
  • Валеев Д.Х.
  • Смирнов И.Г.
  • Азильгареев Х.Г.
RU2158314C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ДЕТАЛЕЙ ИЗ КОНСТРУКЦИОННОЙ СТАЛИ ПОНИЖЕННОЙ И РЕГЛАМЕНТИРОВАННОЙ ПРОКАЛИВАЕМОСТИ 2010
  • Кузнецов Анатолий Алексеевич
  • Пекер Аркадий Моисеевич
  • Куприянов Алексей Александрович
  • Никитин Сергей Иванович
  • Лернер Игорь Семёнович
RU2450060C1
ПОРШНЕВОЙ ПАЛЕЦ 2009
  • Пекер Аркадий Моисеевич
  • Никитин Сергей Иванович
  • Лернер Игорь Семенович
  • Куприянов Алексей Александрович
  • Карпов Анатолий Александрович
  • Васин Евгений Александрович
  • Кравченко Виктор Иванович
  • Костюкович Геннадий Александрович
  • Кипнис Марат Ефимович
  • Семеняко Михаил Михайлович
RU2410590C1
КОНСТРУКЦИОННАЯ СТАЛЬ ПОНИЖЕННОЙ ПРОКАЛИВАЕМОСТИ 1999
  • Шепеляковский К.З.
  • Лобозов В.П.
  • Кузнецов А.А.
  • Никитин С.И.
  • Каменских А.А.
  • Карпов А.А.
  • Зеленов В.Н.
  • Езубченко В.Н.
RU2158320C1
Рессорный лист 1982
  • Шепеляковский Константин Захарович
  • Зема Евгений Михайлович
  • Ушаков Борис Константинович
  • Недорезов Владимир Афанасьевич
  • Обловацкий Анатолий Константинович
  • Амбарцумян Владимир Хачикович
  • Азаматов Рамиль Абдреевич
SU1086021A1
ПРУЖИННАЯ СТАЛЬ, СПОСОБ ИЗГОТОВЛЕНИЯ ПРУЖИНЫ ИЗ ТАКОЙ СТАЛИ И ПРУЖИНА ИЗ ЭТОЙ СТАЛИ 2006
  • Нао
  • Кавата Казухиса
  • Муген Жюли
  • Лангийом Жак
RU2397270C2

Реферат патента 2009 года СТАЛЬ С ПОНИЖЕННОЙ ПРОКАЛИВАЕМОСТЬЮ ДЛЯ ВИНТОВЫХ ПРУЖИН С ДИАМЕТРОМ ПРУТКОВ 17-23 мм И ПРУЖИНА, ИЗГОТОВЛЕННАЯ ИЗ НЕЕ

Изобретение относится к области металлургии и машиностроения, в частности к пружинно-рессорным сталям, и может быть использовано для изготовления крупных высоконагруженных пружин, подверженных высоким нагрузкам, в частности, для изготовления винтовых пружин подвижного состава железнодорожного транспорта с диаметром прутка 17-23. Сталь содержит углерод, кремний, марганец, алюминий, азот, серу, фосфор, хром, никель, медь и железо при следующем соотношении компонентов, мас.%: углерод 0,55-0,63, кремний 0,10-0,35, марганец<0,20, алюминий 0,02-0,06, азот 0,004-0,016, сера ≤0,025, фосфор ≤0,020, хром 0,10-0,20, никель 0,15-0,20, медь 0,15-0,20, железо - остальное. Сталь имеет балл аустенитного зерна 11-13 и структуру мелкоигольчатого мартенсита отпуска на поверхности и сорбита в сердцевине после объемно-поверхностной закалки и отпуска. Увеличивается уровень эксплуатационных характеристик, в частности механических свойств, релаксационной стойкости, циклической долговечности и коррозионной стойкости. 2 н.п. ф-лы, 1 табл.

Формула изобретения RU 2 370 566 C2

1. Сталь с пониженной прокаливаемостью для винтовых пружин подвижного состава железнодорожного транспорта с диаметром прутка 17-23 мм, содержащая углерод, кремний, марганец, хром, никель, медь и железо, отличающаяся тем, что она дополнительно содержит алюминий, азот, серу и фосфор при следующем соотношении компонентов, мас.%:
углерод 0,55-0,63 кремний 0,10-0,35 марганец ≤0,20 алюминий 0,02-0,06 азот 0,004-0,016 сера ≤0,025 фосфор ≤0,020 хром 0,10-0,20 никель 0,15-0,20 медь 0,15-0,20 железо остальное


и имеет аустенитное зерно 11-13 балла.

2. Винтовая пружина подвижного состава железнодорожного транспорта с диаметром прутка 17-23 мм, отличающаяся тем, что она выполнена из стали по п.1 и имеет после объемно-поверхностной закалки и отпуска в сердцевине структуру сорбита, а на поверхности - структуру мелкоигольчатого мартенсита отпуска.

Документы, цитированные в отчете о поиске Патент 2009 года RU2370566C2

СОРОКИН В.Г
Стали и сплавы
Марочник
- М.: Интермет инжиниринг, 2001, с.294-295
КОНСТРУКЦИОННАЯ СТАЛЬ ПОНИЖЕННОЙ ПРОКАЛИВАЕМОСТИ 1999
  • Шепеляковский К.З.
  • Лобозов В.П.
  • Кузнецов А.А.
  • Никитин С.И.
  • Каменских А.А.
  • Карпов А.А.
  • Зеленов В.Н.
  • Езубченко В.Н.
RU2158320C1
Сталь 1986
  • Шепеляковский Константин Захарович
  • Ушаков Борис Константинович
  • Федин Владимир Михайлович
  • Латышкова Цецилия Павловна
  • Девяткин Василий Петрович
  • Дмитриев Василий Дмитриевич
  • Плеплер Марк Лазоревич
  • Голеш Марк Соломонович
SU1470808A1
Сталь для рессор 1991
  • Губайдуллин Ирек Насырович
  • Зеленов Вячеслав Николаевич
  • Богомолов Андрей Николаевич
  • Голуб Елена Ивановна
  • Филиппенков Анатолий Анатольевич
  • Гаврилюк Мария Федоровна
  • Петрук Анна Ивановна
SU1802828A3
ЩИТОВОЙ ДЛЯ ВОДОЕМОВ ЗАТВОР 1922
  • Гебель В.Г.
SU2000A1
УСТРОЙСТВО для ТРЕНИРОВКИ СПОРТСМЕНОВ 0
SU277656A1
Разборный с внутренней печью кипятильник 1922
  • Петухов Г.Г.
SU9A1
Приспособление для точного наложения листов бумаги при снятии оттисков 1922
  • Асафов Н.И.
SU6A1

RU 2 370 566 C2

Авторы

Андреев Александр Петрович

Андреев Александр Александрович

Бочкарев Вячеслав Николаевич

Чижов Василий Алексеевич

Федин Владимир Михайлович

Борц Алексей Игоревич

Ушаков Борис Константинович

Решетников Сергей Анатольевич

Мулюкин Иван Степанович

Мацкевич Владимир Викторович

Даты

2009-10-20Публикация

2007-08-29Подача