ДЕТАЛЬ СТУПЕНИ ЦЕНТРОБЕЖНОГО НАСОСА И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ Российский патент 2009 года по МПК F04D1/06 F04D13/10 F04D29/22 F04D29/44 C22C35/00 

Описание патента на изобретение RU2374495C1

Изобретение относится к области насосостроения и может быть использовано при создании центробежных насосов, предназначенных для добычи нефти и других жидкостей с высоким содержанием абразивных частиц..

Известны деталь ступени погружного центробежного насоса и способ ее изготовления, причем деталь выполняют из литой чугунной заготовки и подвергают упрочняющей обработке (см. патент RU №2116515, кл. F04D 1/06, 27.07.1998).

У данной детали с использованием описанного способа ее изготовления достигается повышение ее износостойкости. Однако упрочняющая обработка, заключающаяся в закалке заготовки из перлитного или перлитно-ферритного чугуна, модифицированного редкоземельными металлами, на мартенситную структуру с последующим низким отпуском, не обеспечивает комплексного повышения надежности и долговечности ступени насоса.

Наиболее близкими к изобретению являются деталь ступени центробежного насоса и способ ее изготовления, при этом деталь ступени погружного центробежного насоса выполнена из литой чугунной заготовки, материал заготовки содержит от 1,1 до 3,0% углерода и не менее 70% аустенита, а способ изготовления детали ступени погружного центробежного насоса заключается в том, что из чугуна, содержащего от 1,1 до 3% углерода, отливают заготовку детали с обеспечением содержания аустенита в охлажденной заготовке не менее 70%, по крайней мере, одну поверхность заготовки подвергают последовательно механической обработке и пластической деформации, причем пластическую деформацию осуществляют путем однократного перемещения по указанной поверхности инструмента, воздействующего на участки поверхности с ультразвуковой частотой, в направлении, приближенно, нормальном к соответствующему участку поверхности (см. патент RU №2213886, кл. F04D 7/04, 10.10.2003).

Однако изготовление детали центробежного насоса путем отливки из чугуна в ряде случаев не позволяет использовать эти детали в насосах, испытывающих знакопеременные и ударные нагрузки, что сужает область использования данных деталей.

Задача, на решение которой направлено изобретение, состоит в создании деталей ступени центробежного насоса, в частности рабочего колеса и направляющего аппарата, предназначенной для использования в агрессивной среде и в условиях как высокого абразивного износа, так и при значительных знакопеременных нагрузках.

Технический результат заключается в том, что достигается повышение износостойкости и твердости отлитых из легированной стали деталей центробежного насоса.

Указанная задача решается, а технический результат достигается в части устройства как объекта изобретения за счет того, что деталь ступени центробежного насоса выполнена путем ее отливки в предварительно изготовленную форму, при этом деталь изготавливают из лигированной хромистой стали, причем в расплав стали перед разливкой расплава в формы для заднего диска и лопаток рабочих колес центробежного насоса, а также направляющего аппарата добавлена в качестве модифицирующих элементов бескремнистая комплексная лигатура на основе редкоземельных элементов и никеля в количестве от 0,03 до 0,05% от массы расплава.

Указанная задача решается, а технический результат достигается в части способа как объекта изобретения за счет того, что способ изготовления детали ступени центробежного насоса заключается в том, что расплав металла заливают в предварительно изготовленную форму, при этом в форму заливают расплав легированной хромистой стали, причем перед разливкой расплава в формы в него добавляют в качестве модифицирующих элементов бескремнистую комплексную лигатуру на основе редкоземельных элементов и никеля в количестве от 0,03 до 0,05% от массы расплава, а после заливки расплава в формы производят охлаждение отливок, а затем для выравнивания дендритной структуры полученные отливки подвергают отжигу путем загрузки в печь при температуре 750°С, нагревают отливки до температуры 950°С, выдерживают при температуре 950°С±10°С в течение от 2 до 2,5 часов и охлаждают вместе с печью до температуры 550°С, после чего охлаждают отливки на воздухе до температуры окружающей среды, а затем проводят закалку полученных отливок путем загрузки в печь при температуре 800°С, нагреве отливки до температуры 1050°С±10°С, выдержке в печи при указанной температуре в течение от 2,2 до 2,3 часов, охлаждении на воздухе до температуры 100°С в течение от 2,5 до 3,0 часов и отпуске при температуре 580°С±10°С в течение 3-х часов с последующим охлаждением отливки на воздухе до температуры окружающей среды.

На чертеже в качестве примера детали центробежного насоса изображено рабочее колесо ступени центробежного насоса закрытого типа.

Деталь ступени центробежного насоса, в данном случае рабочее колесо центробежного насоса, состоит из лопаток 1, покрывного диска 2, заднего диска 3 и ступицы 4.

Деталь изготавливают следующим образом

Осуществляют плавку, например в плавильных электродуговых или индукционных электропечах, легированной хромистой стали. Отливку деталей получают путем заливки жидкой стали в литейные формы. После извлечения из форм отливки детали ее подвергают очистке и обрубке обычно применяемыми для этого способами, при этом расплавляют легированную хромистую сталь, например сталь 20X13Л, причем в расплав стали перед разливкой расплава в форму, например в форму рабочих колес центробежных насосов, добавляют в качестве модифицирующих элементов бескремнистую комплексную лигатуру на основе редкоземельных элементов и никеля (редкоземельные элементы ≥20%; Al≥20%; Ti≥5%; Са≥1%; Ni - остальное) в количестве от 0,03 до 0,05% от массы расплава. После этого заливают расплав в формы и производят охлаждение отливок деталей. Затем полученные отливки для выравнивания дендритной структуры подвергают отжигу путем загрузки в печь при температуре 750°С, нагревают отливки до температуры 950°С, выдерживают при температуре 950°С±10°С в течение от 2 до 2,5 часов и охлаждают вместе с печью до температуры 550°С, после чего охлаждают отливки на воздухе до температуры окружающей среды, а затем проводят закалку полученных отливок путем загрузки в печь при температуре 800°С, нагреве отливки до температуры 1050°С±10°С, выдержке в печи при указанной температуре в течение от 2,2 до 2,3 часов, охлаждении на воздухе до температуры 100°С в течение от 2,5 до 3,0 часов и отпуске при температуре 580°С±10°С в течение 3-х часов с последующим охлаждением отливки на воздухе до температуры окружающей среды.

Указанные технические средства и технологические приемы обеспечивают получение качественных отливок деталей с заявленными свойствами.

Для определения влияния модифицирования на свойства легированной хромистой стали, в данном случае стали 20X13Л, были залиты два блока образцов (блок образцов для проведения испытания механических свойств в соответствии ГОСТ 377-88) с одной плавки №1469, химический состав представлен в таблице 1.

Таблица 1 Химический состав C Cr Fe Mn Si S P Плавка №1469 0,18 13,1 Госн. 0,57 0,31 0,013 0,025 Химический состав стали 20X13Л по ГОСТ 977-88 0,16…0,25 12…14,0 Госн. 0,3…0,8 0,2…0,8 0,025 0,03

первый блок образцов заливался расплавом стали, подвергнутым модифицированию бескремнистой комплексной лигатурой. Лигатура вводилась в ковш перед разливкой в количестве 0,03-0,05% (приблизительно 120 грамм) от массы расплава в ковше;

второй блок образцов заливался расплавом стали той же плавки без введения модификатора.

При сравнении микроструктуры на образце без модифицирования (микролегирования) выявляется более крупнозернистая структура с карбидами по границам зерна.

Твердость в литом состоянии составляет:

образец модифицированный dотп 2,75 (НВ 495), образец немодифицированный dотп 2,9 (НВ 444) повышение износостойкости и твердости отлитых из легированной стали деталей.

Для выравнивания дендритной структуры, получаемой отливками при первичной кристаллизации, и улучшения обрабатываемости при механической обработке отливки рабочих колес и исследуемые образцы подвергаются отжигу по режиму: загрузка в печь при температуре 750°С, нагрев до 950°С и выдержка при 950°С±10° в течение 2+0,5 часа, охлаждение вместе с печью до 550°С, дальнейшее охлаждение на воздухе. Для предотвращения образования холодных трещин, к которым склонна сталь 20X13Л, охлаждение отливок и образцов производится с температуры 950 до 550°С вместе с печью.

Механические свойства, полученные на образцах, прошедших отжиг, представлены в таблице 2.

Таблица 2 Механические свойства стали 20X13Л после отжига Показатели механических свойств σв (кг/мм2) σ02 (кг/мм) δ(%) ψ(%) ак (кгс-м/см2) dопт (мм) НВ 63,9 56,7 13,4 25,2 5,0 34,3 (НВ 197)

При замедленном охлаждении при отжиге происходит выделение карбидов по границам зерен, которое приводит к снижению коррозионной стойкости отливок.

Для обеспечения требований по износостойкости и коррозионностойкости отливки рабочих колес подвергаются термической обработке по следующему режиму: загрузка в печь на закалку при температуре 800°С, нагрев до 1050°С±10° и выдержка при 1050°С±10° в течение 2 час 15 мин. Охлаждение на воздухе до температуры 100°С (2,5-3 часа), отпуск при температуре 580°С±10° в течение 3-х часов с охлаждением на воздухе.

Из сравнения образцов видно, что микроструктура модифицированного (микролегированного) образца более мелкозернистая с менее выраженным остаточным аустенитом и значительно меньшим выделением карбидов по границам зерен.

Механические свойства, полученные на образцах, прошедших модифицирование в процессе плавки стали и полный цикл вышеуказанной термообработки, представлены в таблице 3, в которой также представлены механические свойства стали 20X1ЗЛ после термообработки по ГОСТ 977-88.

Таблица 3 Механические свойства Показатели механических свойств Сталь 20X1ЗЛ после упрочняющей термической обработки (подвергнутой модифицированию) σв (кгc/мм2) σ02 (кгc/мм2) δ(%) ψ(%) ак (кгс-м/см2) dопт (мм) НВ 106,2 92,4 9,0 18,3 3,0 3,6 (НВ 285) Сталь 20X1ЗЛ после закалки с охлаждением в масле или на воздухе и отпуска в соответствии с ГОСТ 977-88 589 мПа (60 кгс/мм2) 441 мПа (45 кгс/мм2) 16 40 392 кДж/м2 (3,9 кгс/см2)

Анализ полученных результатов показывает следующее:

1) получены более высокие прочностные характеристик стали 20X13Л (по сравнению с ГОСТ 977-88) в результате проведения операции модифицирования расплава и упрочняющей термической обработки;

2) получена благоприятная мелкозернистая микроструктура с меньшим выделением карбидов по границам зерен.

Настоящее изобретение может быть использовано в машиностроении при изготовлении деталей центробежных насосов методом отливки из легированной хромистой стали, в частности деталей центробежных насосов, работающих при повышенных нагрузках и подвергающихся абразивному износу и знакопеременным нагрузкам, например рабочих колес центробежных насосов.

Похожие патенты RU2374495C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ ОТЛИВКИ ИЗ СТАЛИ 2008
  • Сломинский Владимир Петрович
  • Клычин Сергей Константинович
RU2373022C1
СТУПЕНЬ ПОГРУЖНОГО МНОГОСТУПЕНЧАТОГО ЦЕНТРОБЕЖНОГО НАСОСА И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ 2009
  • Шляховский Фёдор Александрович
RU2450888C2
СПОСОБ ПОЛУЧЕНИЯ ЧУГУНА С ШАРОВИДНЫМ ГРАФИТОМ И АУСТЕНИТНО-ФЕРРИТНОЙ МЕТАЛЛИЧЕСКОЙ МАТРИЦЕЙ 2009
  • Макаренко Константин Васильевич
RU2415949C2
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОПРОЧНОГО ЧУГУНА 2015
  • Колесников Михаил Семенович
  • Мухаметзянова Гульнара Фагимовна
  • Астащенко Владимир Иванович
  • Мухаметзянов Ильнар Ринатович
RU2605016C2
Способ получения высокопрочного чугуна с шаровидным графитом 1988
  • Найдек Владимир Леонтьевич
  • Соколюк Юрий Трофимович
  • Раздобарин Иван Григорьевич
  • Краля Василий Дмитриевич
SU1666546A1
Жаростойкая сталь 1981
  • Примеров Сергей Николаевич
  • Алексеев Юрий Павлович
  • Гаврилюк Владимир Петрович
  • Салтыкова Зоя Алексеевна
  • Чигринов Владислав Федорович
SU971909A1
СПОСОБ ПОЛУЧЕНИЯ ОТЛИВОК ИЗ ПОЛОВИНЧАТОГО ЧУГУНА С АУСТЕНИТНО-БЕЙНИТНОЙ СТРУКТУРОЙ 2003
  • Макаренко К.В.
RU2250268C1
СПОСОБ ПОЛУЧЕНИЯ АЛЮМИНИЕВОГО ЧУГУНА 2015
  • Катаев Владимир Викторович
  • Шешуков Олег Юрьевич
  • Ермакова Валентина Петровна
  • Смирнова Валентина Григорьевна
  • Маршук Лариса Александровна
RU2590772C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ЧУГУНА С ШАРОВИДНЫМ ГРАФИТОМ 2012
  • Макаренко Константин Васильевич
  • Зенцова Екатерина Александровна
RU2504597C1
Литейная сталь 1981
  • Примеров Сергей Николаевич
  • Горенко Вадим Георгиевич
  • Шейко Анатолий Антонович
  • Бобраков Сергей Николаевич
  • Чеботарев Владимир Андреевич
  • Манжола Борис Андреевич
SU973662A1

Реферат патента 2009 года ДЕТАЛЬ СТУПЕНИ ЦЕНТРОБЕЖНОГО НАСОСА И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ

Изобретение относится к области насосостроения и может быть использовано при создании центробежных насосов, предназначенных для добычи нефти и других жидкостей с высоким содержанием абразивных частиц. Деталь ступени центробежного насоса выполнена путем ее отливки в предварительно изготовленную форму. Деталь изготавливают из лигированной хромистой стали, причем в расплав стали перед разливкой расплава в формы для заднего диска и лопаток рабочих колес центробежного насоса, а также направляющего аппарата добавлена в качестве модифицирующих элементов бескремнистая комплексная лигатура на основе редкоземельных элементов и никеля в количестве от 0,03 до 0,05% от массы расплава. В результате достигается повышение износостойкости и твердости отлитых из легированной стали деталей. 2 н.п. ф-лы, 1 ил., 3 табл.

Формула изобретения RU 2 374 495 C1

1. Деталь ступени центробежного насоса, выполненная путем ее отливки в предварительно изготовленную форму, отличающаяся тем, что деталь изготавливают из легированной хромистой стали, причем в расплав стали перед разливкой расплава в формы для заднего диска и лопаток рабочих колес центробежного насоса, а также направляющего аппарата добавлена в качестве модифицирующих элементов бескремнистая комплексная лигатура на основе редкоземельных элементов и никеля в количестве от 0,03 до 0,05% от массы расплава.

2. Способ изготовления детали ступени центробежного насоса, заключающийся в том, что расплав металла заливают в предварительно изготовленную форму, отличающийся тем, что в форму заливают расплав легированной хромистой стали, причем перед разливкой расплава в формы в него добавляют в качестве модифицирующих элементов бескремнистую комплексную лигатуру на основе редкоземельных элементов и никеля в количестве от 0,03 до 0,05% от массы расплава, а после заливки расплава в формы производят охлаждение отливок, а затем для выравнивания дендритной структуры полученные отливки подвергают отжигу путем загрузки в печь при температуре 750°С, нагревают отливки до температуры 950°С, выдерживают при температуре 950°С±10°С в течение от 2 до 2,5 ч и охлаждают вместе с печью до температуры 550°С, после чего охлаждают отливки на воздухе до температуры окружающей среды, а затем проводят закалку полученных отливок путем загрузки в печь при температуре 800°С, нагреве отливки до температуры 1050°С±10°С, выдержке в печи при указанной температуре в течение от 2,2 до 2,3 ч, охлаждении на воздухе до температуры 100°С в течение от 2,5 до 3,0 ч и отпуске при температуре 580°С±10°С в течение 3 ч с последующим охлаждением отливки на воздухе до температуры окружающей среды.

Документы, цитированные в отчете о поиске Патент 2009 года RU2374495C1

ДЕТАЛЬ СТУПЕНИ ПОГРУЖНОГО ЦЕНТРОБЕЖНОГО НАСОСА И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ 2001
  • Глускин Я.А.
  • Киселев А.Е.
RU2213886C2
МНОГОСТУПЕНЧАТЫЙ ЦЕНТРОБЕЖНЫЙ НАСОС 1996
  • Наумов Ю.И.
  • Козлов Р.Р.
  • Лукина В.А.
  • Трофимова М.Ю.
RU2116515C1
Газогенератор высокого давления со взвешенным слоем топлива 1947
  • Нечаев М.А.
SU72228A1
СПОСОБ ПОЛУЧЕНИЯ ОТЛИВОК ИЗ ИЗНОСОСТОЙКОЙ СТАЛИ 1996
  • Кульбовский И.К.
  • Игнатенко Ю.В.
  • Медведев В.И.
  • Кульбовский Г.И.
RU2105821C1
ЛИГАТУРА (ВАРИАНТЫ) 2001
  • Примеров С.Н.
  • Михеев А.В.
  • Михеев Ф.В.
RU2191213C1
JP 59145400 A, 20.08.1984
US 4121924 A, 24.10.1978.

RU 2 374 495 C1

Авторы

Анохин Владимир Дмитриевич

Даты

2009-11-27Публикация

2008-08-13Подача