СПОСОБ ПОЛУЧЕНИЯ ЧУГУНА С ШАРОВИДНЫМ ГРАФИТОМ Российский патент 2009 года по МПК C21C1/10 

Описание патента на изобретение RU2375461C2

Изобретение относится к металлургии и в частности к литейному производству изделий из чугуна, имеющего в структуре графит шаровидной формы.

Известен способ получения высокопрочного чугуна с графитом в структуре шаровидной и вермикулярной формы, включающий расплавление шихты в плавильном агрегате, доводку температуры расплава до 1420÷1480°С, его первоначальное модифицирование до появления эффекта перемодифицирования с получением вермикулярного графита лигатурой, содержащей 8÷40% РЗМ, 20÷60% кремния, 0,5÷6,0% кальция, 0,1÷3,0% магния, 0,1÷15% алюминия, 0,1÷2,5% меди в количестве до 2,5% от массы расплава, подаваемой на разливочный желоб печи или в раздаточный ковш, вторичное модифицирование расплава лигатурой в количестве 0,1÷1,2% от массы металла, содержащей РЗМ, кальций, магний и кремний при температуре металла 1300÷1400°С (см. п. РФ №2188240 по кл. С21С 1/10, С22С 37/04, заявл. 19.04.2001, опубл. 27.08.2002 «Способ получения высокопрочного чугуна»).

Недостатками данного способа являются:

1. Нестабильность технологического процесса и усвоения элементов из лигатуры в связи с ее подачей в виде отдельных кусков лигатуры на разливочный желоб печи либо в раздаточный ковш.

2. Высокая стоимость обработки металла лигатурой, содержащей до 40% РЗМ.

3. Необходимость проведения отдельной операции вторичного модифицирования расплава, без которой при данном составе лигатуры не обеспечивается модифицирование чугуна с получением в структуре нужной формы графита.

Наиболее близким по технической сущности, достигаемому результату и выбранным в качестве прототипа является способ получения чугуна с шаровидным графитом (см. п. РФ №2110582 по кл. С21С 1/10 заявл. 7.10.96, опубл. 10.05.98 «Способ получения чугуна с шаровидным графитом из чугуна ваграночной плавки с температурой расплава ниже 1300°С») из ваграночной плавки с температурой расплава ниже 1300°С, включающий расплавление исходной шихты, выпуск из печи в открытый разливочный ковш, сфероидизирующую обработку расплава магний-кальцийсодержащим порошковым проволочным модификатором и заливку металла в формы. При этом сфероидизирующая обработка ведется по двухэтапной схеме, включающей в себя вначале ввод расчетного количества магний-кальцийсодержащего порошкового проволочного модификатора в виде мерных концов на желоб вагранки, а затем - в стояк литниковой системы в процессе сборки литейной формы.

К основным недостаткам способа относятся:

1. Ограниченная применимость способа только для ваграночных плавок.

2. Низкая температура обработки чугуна - ниже 1300°С, - что не позволяет модификатору прореагировать со всем объемом расплава и приводит либо к неоднородному распределению в структуре включений графита нешаровидной формы, либо к значительному перерасходу модификатора - до 20 кг на тонну металла.

3. Присадка модификатора двухстадийно в виде порошковой проволоки, укладываемой на желоб печи, а затем и в литниковую систему не обеспечивает равномерное взаимодействие магний-кальциевого материала со всем объемом расплава. Это достигается только при обработке порошковой проволокой всего объема расплава в идентичных условиях, например в ковше перед заливкой металла в формы. При такой технологии процесс модифицирования является одностадийным.

4. В прототипе не оговорены основные технологические параметры процесса модифицирования металла порошковой проволокой: количество вводимого материала на тонну расплава, скорость подачи модификатора в единицу времени, содержание магния в модификаторе и т.д., то есть важнейшие параметры, определяющие эффективность десульфурации, сфероидизации и инокулирования металла, а следовательно, качество получаемого чугуна с графитом шаровидной формы.

5. В прототипе не предусмотрена такая важнейшая технологическая операция, как инокулирующая обработка расплава, предотвращающая нежелательное образование цементита в структуре чугуна.

При создании изобретения ставилась задача повышения качества производимого чугуна.

Техническим результатом, достигаемым при реализации изобретения, является повышение механических свойств чугуна за счет получения в структуре готовых изделий равномерно распределенных включений графита шаровидной формы.

Указанная задача решается за счет того, что в известном способе получения чугуна с шаровидным графитом, включающем выплавку промежуточного продукта, выпуск расплава в ковш, обработку расплава порошковой проволокой с магнийсодержащим наполнителем и последующую заливку металла в форму, согласно изобретению обработку расплава ведут при температуре 1300÷1550°С порошковой проволокой, наполнитель которой содержит железо, кремний и не менее 18 мас.% магния, при скорости подачи проволоки 0,1÷2,5 м/с и расходе магния 0,5÷3 кг на тонну расплава.

Наполнитель порошковой проволоки может дополнительно содержать 0,5-10 мас.% в суммарном количестве РЗМ, бария, кальция, титана, алюминия.

Перед подачей в расплав порошковой проволоки в ковш предварительно может быть введена кальцинированная сода или смесь кальцинированной соды и плавикового шпата в равном соотношении в количестве 1÷5 кг на тонну расплава.

Перед заливкой металла в форму в ковш может быть дополнительно введена с расходом 1÷5 кг на тонну расплава порошковая проволока, наполнитель которой представляет собой ферросилиций или смесь ферросилиция и 1÷8 мас.% в суммарном количестве бария, кальция, алюминия.

Исследования, проведенные по патентной и научно-технической информации, показали, что заявляемый способ неизвестен и не следует явным образом из изученного уровня техники, т.е. соответствует критериям новизна и изобретательский уровень.

Заявляемый способ получения чугуна может быть реализован на любом предприятии, специализирующимся в данной отрасли, т.к. для этого требуются известные материалы и стандартное оборудование, т.е. является промышленно применимым.

Большинство современных технологий изготовления изделий из чугуна, имеющего в структуре графит шаровидной формы (ЧШГ), как правило, включают обработку расплава магнийсодержащими модификаторами, являющимися наполнителями порошковой проволоки, вводимой в жидкий металл непосредственно перед его кристаллизацией. Магниевый модификатор, взаимодействуя с расплавом, оказывает десульфурирующее, а затем и сфероидизирующее воздействие на чугун. Качество получаемых изделий, т.е. их структура и механические свойства, определяется многими особенностями технологии модифицирования: составом и количеством вводимых модификаторов, температурой и химсоставом обрабатываемого расплава, размерами и формой получаемых изделий и т.д. Все перечисленные технологические факторы оказывают взаимосогласованное влияние на формирование требуемой структуры и свойства чугунных изделий, поэтому крайне важно грамотное управление процессами, происходящими в металле на различных этапах модифицирования. Наиболее стабильно, полно и однородно по объему всего металла модифицирование осуществляется в случае обработки расплава в разливочном (промежуточном) ковше при подаче в чугун модификаторов, являющихся наполнителями порошковой проволоки, оболочка которой выполнена из стальной ленты.

Качество структуры чугуна с шаровидным графитом оценивается по ГОСТ 3443-87, а его механические свойства по ГОСТ 7293-85; в случае равномерного распределения графита в структуре - балл ШГр1, при неравномерном распределении - балл ШГр2, при шаровидной правильной или неправильной форме включений - балл ШГф5 и балл ШГф4 соответственно, а при неблагоприятной компактной форме - балл ШГф3. В случае чугуна с шаровидным графитом, имеющим перлитную основу, высокими механическими свойствами считаются значения предела прочности более 600 МПа.

Экспериментально установлено, что эффективная обработка расплава с получением чугуна, имеющего в структуре однородный шаровидный графит, может происходить в достаточно широком температурном диапазоне 1300÷1550°С при введении порошковой проволоки с магнийсодержащим модификатором со скоростью 0,1÷2,5 м/с и расходом 0,5÷3 кг магния на тонну расплава.

При более низких температурах оболочка порошковой проволоки растворяется достаточно медленно и магний не успевает равномерно разойтись по всему объему обрабатываемого металла, а при больших температурах - резко увеличивается его угар. При отдаче магния менее 0,5 кг на тонну расплава не происходит сфероидизирующая обработка, а при расходе магния более 3 кг на тонну избыток магния горит, что ухудшает как экономические показатели, так и экологические условия производства. При введении порошковой проволоки в расплав со скоростью менее 0,1 м/с стальная оболочка проволоки растворяется уже в верхней части ковша и всплывающий вверх магний взаимодействует лишь с частью металла. В случае подачи проволоки со скоростью больше 2,5 м/с она до растворения оболочки успевает, отразившись от дна, подняться к верху ковша. В этом случае нижние слои металла в ковше также не вступают в контакт с магнием. В результате во всех перечисленных вариантах имеют место неоднородность структуры расплава и кристаллизовавшегося металла и, как следствие, низкие механические свойства готовых изделий.

Помимо влияния вводимого в расплав магния важно и содержание в модификаторе других элементов. Так наличие кремния в модификаторе оказывает инокулирующее действие на металл - дополнительно увеличивается количество центров графитизации, измельчается структура отливок, предотвращается образование цементита. В этом случае обработку расплава можно производить одностадийно, т.к. состав модификатора, в отличие от прототипа, одновременно содержит десульфурирующие, сфероидизирующие и инокулирующие элементы.

Кроме того, увеличение содержания кремния в металле за счет его присутствия в составе модификатора существенно изменяет механические свойства - предел прочности и ударную вязкость, а также структуру ЧШГ.

Наличие в модификаторе, являющемся наполнителем порошковой проволоки, таких элементов, как РЗМ, кальций, барий, титан, алюминий, начиная с 0,5% их суммарного содержания, усиливает десульфурирующий, сфероидизирующий и инокулирующий эффекты модифицирования. Однако известно, что при суммарном содержании данных элементов более 10% существуют и негативные моменты их присутствия: увеличивается загрязненность металла, появляется и усиливается неоднородность распределения этих элементов (например, «цериевая неоднородность» и т.д.), что приводит к ухудшению структуры и снижению прочностных свойств изделий.

Эффективность десульфурирующей и сфероидизирующей обработки расплава магнийсодержащей порошковой проволокой зависит от содержания серы в металле. При повышенных количествах серы в расплаве увеличивается доля магния, расходуемая на десульфурацию металла, что приводит к снижению однородности распределения и ухудшению формы графита в структуре чугуна. Для борьбы с этим явлением можно применять предварительную, т.е. до введения магнийсодержащей порошковой проволоки, обработку расплава десульфураторами - кальцинированной содой или смесью в равном соотношении кальцинированной соды и плавикового шпата. Исследования показали, что достаточно 1-5 кг такого материала для повышения качества чугуна: улучшения его структуры и увеличения прочностных характеристик. Применение больших количеств десульфураторов экономически нецелесообразно, т.к. не приводит к дальнейшему улучшению качества чугуна.

Известно, что сфероидизирующее воздействие магнийсодержащих модификаторов на структуру чугуна имеет временное ограничение: спустя 15÷20 минут после обработки расплава этим материалом эффект модифицирования заметно уменьшается, а поскольку на практике при осуществлении технологического процесса получения модифицированного чугуна с шаровидным графитом всегда возможны временные задержки, качество получаемых изделий из ЧШГ бывает нестабильным. Вместе с тем существуют способы дополнительного усиления сфероидизирующего и инокулирующего эффектов. Установлено, что для этого необходимо после обработки расплава модифицирующей магнийсодержащей порошковой проволокой непосредственно перед заливкой металла в форму провести дополнительную обработку расплава порошковой проволокой с инокулирующим наполнителем - ферросилицием либо ферросилицием вместе с добавками кальция, бария, алюминия, которые еще больше увеличивают «живучесть» магния в чугуне. Экспериментально показано, что положительный эффект такой дополнительной обработки достигается при введении 1÷5 кг инокулятора-модификатора на тонну расплава. Большее количество этого материала может ухудшить равномерность распределение графита в структуре чугуна и экономически нецелесообразно.

Кроме того, при прочих равных условиях обработки расплава порошковой проволокой эффективность ее модифицирующего воздействия на структуру чугуна зависит от содержания магния в наполнителе. Одновременная десульфурирующая, сфероидизирующая и инокулирующая обработки расплава осуществляются при содержании магния в составе наполнителя-модификатора не менее 18%. При меньшем содержании магния для достижения требуемого эффекта необходимо увеличивать количество вводимой порошковой проволоки, что приводит к охлаждению металла, увеличению времени обработки, сопровождается повышением неоднородности распределения графита и падением механических свойств чугуна.

Заявляемый способ получения чугуна был опробован при производстве изделий из ЧШГ. Выплавку чугуна химсостава (мас.%) С 2,7÷2,8; Si 1,9÷2,0; Mn 0,35÷0,45; S 0,010÷0,030; Р 0,04÷0,05 осуществляли в ДСП. Далее чугун выливали в 15 т ковш, который после скачивания шлака накрывали крышкой, и при температурах в диапазоне 1250÷1580°С через отверстие в крышке обрабатывали порошковой проволокой с различным составом модификаторов-наполнителей, вводимой трайб-аппаратом в расплав со скоростью 0,05÷3 м/сек при расходе магния 0,2÷4 кг на тонну чугуна (см. таблицы 1 и 2). Порошковая проволока имела диаметр 14 мм со стальной оболочкой толщиной 0,4 мм. Различные наполнители порошковой проволоки получали механическим смешением компонентов, частицы которых имели размер 0÷3 мм.

В результате обработки расплава порошковой проволокой содержание кремния в металле увеличилось до 2,4÷2,8%.

В ряде экспериментов при повышенном содержании серы в расплаве (более 0,02%) перед введением порошковой проволоки чугун дополнительно обрабатывали кальцинированной содой или смесью кальцинированной соды и плавикового шпата в соотношении 1:1 (см. таблицу 3) в количестве 1÷10 кг на тонну металла.

В некоторых опытах проводили дополнительную (после введения магнийсодержащей порошковой проволоки) обработку расплава порошковой проволокой с модификаторами-инокуляторами (ферросилицием или ферросилицием вместе с кальцием, барием и алюминием) в количестве 1÷7 кг модификатора на тонну расплава (см. таблицу 4).

Во всех экспериментах после заключительной обработки расплава порошковой проволокой проводили скачивание шлака и, не более чем через 10 минут после обработки, заливку чугуна в форму. В структуре после кристаллизации оценивали характер распределения и форму графита, а также измеряли предел прочности металла.

Обработка по прототипу включала выплавку чугуна химсостава (мас.%) 2,7С; 2,5Si; 0,4Mn; 0,012S; 0.04Р; выпуск металла при 1280°С в 15 т ковш через желоб, скачивание шлака и заливку в форму. Модификатор в расплав вводили порошковой проволокой диаметром 14 мм с толщиной стальной оболочки 0,4 мм и наполнителем - смесью 95% магния и 5% кальция. При этом две трети количества проволоки помещали на углубление разливочного желоба печи, а оставшуюся часть подавали непосредственно в заливочную форму. Общий расход магния на тонну расплава составлял 20 кг. После кристаллизации оценивали структуру и механические свойства чугуна.

Чугуны после всех видов обработок имели перлитную структуру.

Результаты, приведенные в таблицах 1-4, свидетельствуют:

1. Обработка расплава по прототипу (вариант 1 таблицы 1) не обеспечивает равномерное распределение (ШГр2) и глобулярную форму (ШГф3) графита в структуре, а следовательно, приводит к низким прочностным свойствам чугуна - σв - 540 МПа.

2. Обработка расплава по заявляемому способу (варианты 3÷5, 8÷10, 13, 14 таблицы 1) формирует в структуре равномерное распределение (ШГр1) шаровидного графита (ШГф4, ШГф5), что обеспечивает высокие прочностные свойства чугуна - σв более 610 МПа.

3. По сравнению с заявляемым способом снижение (вариант 2 таблицы 1) или повышение (вариант 6 таблицы 1) температуры обработки расплава, уменьшение (вариант 7 таблицы 1) или увеличение (вариант 11 таблицы 1) скорости подачи порошковой проволоки, снижение (вариант 12 таблицы 1) расхода магния на тонну расплава уменьшает прочностные свойства чугуна (σв менее 600 МПа), не обеспечивая формирование требуемой структуры. Увеличение расхода магния до 4 кг на тонну расплава, приводя к хорошим структурным характеристикам и механическим свойствам, сопровождается большим пироэффектом.

4. При обработке расплава порошковой проволокой, содержащей в наполнителе менее 18% магния (варианты 1 и 2 таблицы 2), чугун не имеет удовлетворительной структуры и высоких прочностных свойств. Наилучшее качество структуры и высокие прочностные свойства формируются при обработке расплава порошковой проволокой с содержанием магния в наполнителе не менее 18% (варианты 3, 5, 10, 12 таблицы 2), причем добавки в состав модификатора 0,5÷10% суммарного количества РЗМ, кальция, бария, титана, алюминия (варианты 4, 6, 7, 8, 11, 13 таблицы 2) улучшают структуру и повышают прочностные свойства чугуна. Избыток этих элементов в составе модификатора-наполнителя (вариант 9 таблицы 2) приводит к падению прочностных свойств и ухудшению структуры чугуна.

5. При модифицировании расплава с высоким (более 0,02%) содержанием серы проведение предварительной десульфурации металла кальцинированной содой или смесью кальцинированной соды и плавикового шпата в количестве 1÷5 кг материала на тонну расплава (варианты 2, 3, 6, 7, 10, 11 таблицы 3) существенно улучшает структуру и повышает механические свойства чугуна по сравнению с вариантами, в которых эта обработка не проводилась (варианты 1, 5, 9 таблицы 3). Увеличение расхода десульфураторов до 10 кг на тонну жидкого металла не приводит к дополнительному повышению качества чугуна - варианты 4, 8, 12 таблицы 3.

6. Применение дополнительной инокулирующей обработки расплава порошковой проволокой с наполнителями в виде ферросилиция или смеси ферросилиций + барий, кальций, алюминий (варианты 2÷10 таблицы 4) приводит к некоторому улучшению структуры и прочностных свойств по сравнению с заявляемым вариантом без такой обработки (вариант 1 таблицы 4).

Таблица 1 Влияние технологии обработки расплава порошковой проволокой на структуру и механические свойства чугуна № варианта Температура обработки, °С Скорость подачи проволоки, м/с Расход магния на тонну расплава, кг Структура чугуна (ГОСТ 3443-87) σВ, МПа ШГф ШГр 1 прототип 1280 - 20 ШГф3 ШГр2 540 2 1250 0,5 2 ШГф3 ШГр2 580 3 1300 0,5 2 ШГф4 ШГр1 625 4 1450 0,5 2 ШГф5 ШГр1 630 5 1550 0,5 2 ШГф5 ШГр1 635 6 1580 0,5 2 ШГф3 ШГр2 590 7 1450 0,05 2 ШГф4 ШГр2 595 8 1550 0,1 2 ШГф4 ШГр1 620 9 1450 1 2 ШГф5 ШГр1 635 10 1550 2,5 2 ШГф5 ШГр1 630 11 1550 3 2 ШГф4 ШГр2 590 12 1450 0,5 0,2 ШГф4 ШГр2 595 13 1300 0,5 0,5 ШГф4 ШГр1 610 14 1550 0,5 3 ШГф5 ШГр1 635 15* 1550 0,5 4 ШГф5 ШГр1 635 Примечание: при всех обработках, кроме варианта 1, в модификаторе содержится 30% магния и 70% ферросилиций (ФС45)
*- значительный пироэффект

Таблица 2 Влияние состава модификатора порошковой проволоки на структуру и механические свойств чугуна № варианта Температура обработки расплава, °С Содержание элементов, % Структура чугуна (ГОСТ 3443-87) σВ, МПа Mg Сумма РЗМ, Ва, Ca, Ti, Al Сумма Si и Fe ШГф ШГр 1 1450 12 - 88 ШГф3 ШГр2 580 2 1450 12 3 85 ШГф4 ШГр2 595 3 1550 18 - 82 ШГф4 ШГр1 610 4 1550 19 5 77 ШГф4 ШГр1 620 5 1450 30 - 70 ШГф4 ШГр1 620 6 1450 30 0,5 69,5 ШГф5 ШГр1 630 7 1450 30 5 65 ШГф5 ШГр1 640 8 1450 30 10 60 ШГф5 ШГр1 635 9 1450 30 15 55 ШГф3 ШГр2 580 10 1550 50 - 50 ШГф4 ШГр1 630 11 1550 50 5 45 ШГф5 ШГр1 640 12 1450 70 - 30 ШГф4 ШГр1 630 13 1450 70 5 25 ШГф5 ШГр1 635 Примечание: во всех обработках скорость подачи порошковой проволоки составляет 0,5 м/с, расход магния 2 кг на тонну расплава, содержание серы перед обработкой 0,011÷0,012%.

Таблица 3 Влияние предварительной десульфурации расплава на структуру и механические свойства чугуна № вар. Содержание серы в расплаве, % Десульфурирующий материал Количество десульфурирующего материала на тонну расплава, кг Структура чугуна (ГОСТ 3443-87) σВ, МПа Исходное После десульфурирующей обработки ШГф ШГр 1 0,025 0,025 - - ШГф4 ШГр2 610 2 0,025 0,013 Кальцинированная сода 1 ШГф4 ШГр1 620 3 0,025 0,010 Кальцинированная сода 5 ШГф5 ШГр1 630 4 0,025 0,010 Кальцинированная сода 10 ШГф5 ШГр1 625 5 0,026 0,026 - - ШГф4 ШГр1 615 6 0,026 0,012 Сода + плавиковый шпат(1:1) 1 ШГф5 ШГр1 630 7 0,026 0,009 Сода + плавиковый шпат (1:1) 5 ШГф5 ШГр1 635 8 0,026 0,009 Сода + плавиковый шпат (1:1) 10 ШГф5 ШГр1 630 9 0,030 0,030 - - ШГф3 ШГр2 605 10 0,030 0,014 Кальцинированная сода 1 ШГф4 ШГр1 615 11 0,030 0,009 Кальцинированная сода 5 ШГф5 ШГр1 625 12 0,030 0,009 Кальцинированная сода 10 ШГф5 ШГр1 625 Примечание: Во всех экспериментах температура обработки расплава порошковой проволокой 1500 (±5)°С, расход магния - 2 кг/тн, скорость подачи проволоки 0,5 м/с,
состав модификатора: 30% магния + 70% ферросилиция (ФС45).

Таблица 4 Влияние дополнительной инокулирующей обработки расплава на структуру и механические свойства чугуна № варианта Состав инокулятора, % Расход инокулятора-наполнителя порошковой проволоки на тонну чугуна, кг Структура чугуна (ГОСТ 3443-87) σВ, МПа Ферросилиций (ФС45) Сумма Ва, Са, Al ШГф ШГр 1 - - - ШГф4 ШГр1 615 2 100 - 2 ШГф5 ШГр1 625 3 99 1 2 ШГф5 ШГр1 635 4 92 8 2 ШГф5 ШГр1 630 5 85 15 2 ШГф3 ШГр2 590 6 100 - 0,5 ШГф4 ШГр1 615 7 99 1 1 ШГф5 ШГр1 630 8 100 - 3 ШГф5 ШГр1 630 9 100 - 5 ШГф5 ШГр1 620 10 99 1 7 ШГф4 ШГр2 590 Примечание: во всех экспериментах температура расплава перед обработкой 1500 (±5)°С, расход модифицирующей проволоки 1,5 кг/тн, скорость подачи 0,6 м/с, исходное содержание серы в расплаве 0,012-0,013%, скорость подачи проволоки при инокулирующей обработке 0,7 м/с

Таким образом, результаты, представленные в таблицах 1-4, свидетельствуют, что заявляемый способ обеспечивает повышение механических свойств чугуна за счет получения в структуре готовых изделий равномерно распределенных включений графита шаровидной формы.

Похожие патенты RU2375461C2

название год авторы номер документа
НАПОЛНИТЕЛЬ ПОРОШКОВОЙ ПРОВОЛОКИ ДЛЯ ДЕСУЛЬФУРАЦИИ И МОДИФИЦИРОВАНИЯ ЧУГУНА 2006
  • Исхаков Альберт Ферзинович
  • Малько Сергей Иванович
  • Григорьев Владимир Николаевич
  • Пащенко Сергей Витальевич
  • Воронин Борис Васильевич
  • Радченко Юрий Анатольевич
  • Ховрин Александр Николаевич
  • Даценко Олег Николаевич
  • Журавлев Борис Васильевич
  • Невьянцев Алексей Игоревич
RU2337972C2
СПОСОБ ПОЛУЧЕНИЯ ЧУГУНА С ШАРОВИДНЫМ ГРАФИТОМ ИЗ ЧУГУНА ВАГРАНОЧНОЙ ПЛАВКИ С ТЕМПЕРАТУРОЙ РАСПЛАВА НИЖЕ 1300°С 1996
  • Конышев А.А.
  • Антипов Б.Ф.
  • Демин Ю.С.
  • Исаев А.В.
  • Попков В.А.
  • Матвеевский Г.А.
  • Мазурин В.В.
RU2110582C1
СПОСОБ ИЗМЕЛЬЧЕНИЯ ГРАФИТНЫХ ВКЛЮЧЕНИЙ В ВЫСОКОПРОЧНОМ ЧУГУНЕ 2008
  • Макаренко Константин Васильевич
RU2402617C2
ПОРОШКОВАЯ ПРОВОЛОКА ДЛЯ ВНЕПЕЧНОЙ ОБРАБОТКИ РАСПЛАВОВ НА ОСНОВЕ ЖЕЛЕЗА (ВАРИАНТЫ) 2008
  • Исхаков Альберт Ферзинович
  • Малько Сергей Иванович
  • Гольдштейн Владимир Яковлевич
  • Григорьев Владимир Николаевич
  • Пащенко Сергей Витальевич
  • Радченко Юрий Анатольевич
RU2396359C2
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОПРОЧНОГО ЧУГУНА С ШАРОВИДНЫМ ГРАФИТОМ 2014
  • Коровин Валерий Александрович
  • Леушин Игорь Олегович
  • Седунов Валерий Константинович
  • Слузов Павел Анатольевич
RU2585912C1
Способ получения высокопрочного чугуна с шаровидным графитом 1987
  • Луданов Анатолий Артемович
  • Перевозкин Юрий Лейбович
  • Волчок Иван Петрович
  • Адамович Рем Николаевич
  • Писченков Иван Степанович
SU1475929A1
СПОСОБ КОВШОВОГО МОДИФИЦИРОВАНИЯ РАСПЛАВА ЧУГУНА ЛЕГКИМИ МАГНИЙСОДЕРЖАЩИМИ ЛИГАТУРАМИ 2012
  • Болдырев Денис Алексеевич
RU2500819C2
МАТЕРИАЛ ДЛЯ ВНЕПЕЧНОЙ ОБРАБОТКИ РАСПЛАВА СТАЛИ И ПОРОШКОВАЯ ПРОВОЛОКА С ЕГО ИСПОЛЬЗОВАНИЕМ 2006
  • Исхаков Альберт Ферзинович
  • Малько Сергей Иванович
  • Воронин Борис Васильевич
  • Григорьев Владимир Николаевич
  • Пащенко Сергей Витальевич
  • Радченко Юрий Анатольевич
  • Ховрин Александр Николаевич
RU2337974C2
ЧУГУН И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2018
  • Гулаков Андрей Анатольевич
  • Тухватулин Ильдар Халитович
  • Дегтянников Вячеслав Николаевич
  • Скурихин Александр Владимирович
  • Филиппов Валентин Семенович
RU2697134C1
СПОСОБ ИЗГОТОВЛЕНИЯ ОТЛИВОК ИЗ ЧУГУНА 2013
  • Леушин Игорь Олегович
  • Зиновьев Юрий Александрович
  • Чистяков Дмитрий Геннадьевич
  • Марфенин Сергей Николаевич
RU2541250C1

Реферат патента 2009 года СПОСОБ ПОЛУЧЕНИЯ ЧУГУНА С ШАРОВИДНЫМ ГРАФИТОМ

Изобретение относится к области металлургии и может быть использовано при литье изделий из чугуна с шаровидным графитом. Способ включает выплавку промежуточного продукта и выпуск расплава в ковш. При температуре расплава 1300÷1550°С вводят порошковую проволоку, наполнитель которой содержит железо, кремний и не менее 18 мас.% магния, при скорости подачи проволоки 0,1÷2,5 м/с и расходе магния 0,5÷3 кг на тонну расплава. Перед введением порошковой проволоки в расплав предварительно вводят кальцинированную соду или смесь кальцинированной соды и плавикового шпата в равном соотношении в количестве 1÷5 кг на тонну расплава. Наполнитель порошковой проволоки может дополнительно содержать 0,5÷10 мас.% в суммарном количестве РЗМ, бария, кальция, титана, алюминия. Изобретение позволяет повысить механические свойства чугуна за счет обеспечения в структуре готовых изделий равномерного распределения включений графита шаровидной формы. 4 з.п. ф-лы, 4 табл.

Формула изобретения RU 2 375 461 C2

1. Способ получения чугуна с шаровидным графитом, включающий выплавку промежуточного продукта, выпуск расплава в ковш, обработку расплава порошковой проволокой с магнийсодержащим наполнителем и последующую заливку металла в форму, отличающийся тем, что обработку расплава ведут при температуре 1300÷1550°С порошковой проволокой, наполнитель которой содержит железо, кремний и не менее 18 мас.% магния, при скорости подачи проволоки 0,1÷2,5 м/с и расходе магния 0,5÷3 кг на тонну расплава.

2. Способ по п.1, отличающийся тем, что наполнитель порошковой проволоки дополнительно содержит 0,5÷10 мас.% в суммарном количестве РЗМ, бария, кальция, титана, алюминия.

3. Способ по п.1 или 2, отличающийся тем, что перед введением порошковой поволоки в расплав предварительно вводят кальцинированную соду или смесь кальцинированной соды и плавикового шпата в равном соотношении в количестве 1÷5 кг на тонну расплава.

4. Способ по п.1 или 2, отличающийся тем, что перед заливкой металла в форму в ковш дополнительно вводят с расходом 1÷5 кг на тонну расплава порошковую проволоку, наполнитель которой представляет собой ферросилиций или смесь ферросилиция и 1÷8 мас.% в суммарном количестве бария, кальция, алюминия.

5. Способ по п.3, отличающийся тем, что перед заливкой металла в форму в ковш дополнительно вводят с расходом 1÷5 кг на тонну расплава порошковую проволоку, наполнитель которой представляет собой ферросилиций или смесь ферросилиция и 1÷8 мас.% в суммарном количестве бария, кальция, алюминия.

Документы, цитированные в отчете о поиске Патент 2009 года RU2375461C2

СПОСОБ ПОЛУЧЕНИЯ ЧУГУНА С ШАРОВИДНЫМ ГРАФИТОМ ИЗ ЧУГУНА ВАГРАНОЧНОЙ ПЛАВКИ С ТЕМПЕРАТУРОЙ РАСПЛАВА НИЖЕ 1300°С 1996
  • Конышев А.А.
  • Антипов Б.Ф.
  • Демин Ю.С.
  • Исаев А.В.
  • Попков В.А.
  • Матвеевский Г.А.
  • Мазурин В.В.
RU2110582C1
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОПРОЧНОГО ЧУГУНА 2001
  • Рушаник Б.А.
  • Кавицкий И.М.
  • Кавицкий С.И.
RU2188240C1
GB 1037518 A, 28.03.1963
СПОСОБ ПРЕОБРАЗОВАНИЯ ЗВУКОВЫХ СИГНАЛОВ В ИЗОБРАЖЕНИЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1991
  • Павловский Геннадий Анатольевич
RU2015562C1
Машина для пришивки круглых накладок на металлические петли шинели 1950
  • Смирнов Н.Т.
SU90654A1
US 3870512 A, 11.03.1975.

RU 2 375 461 C2

Авторы

Исхаков Альберт Ферзинович

Бахметьев Виталий Викторович

Малько Сергей Иванович

Цыбров Сергей Васильевич

Пащенко Сергей Витальевич

Авдиенко Андрей Владимирович

Радченко Юрий Николаевич

Женин Евгений Вячеславович

Невьянцев Алексей Игоревич

Копытов Антон Николаевич

Даты

2009-12-10Публикация

2007-02-06Подача