СПОСОБ ИЗВЛЕЧЕНИЯ БЛАГОРОДНЫХ МЕТАЛЛОВ ИЗ РУД Российский патент 2009 года по МПК C22B11/00 C22B3/04 

Описание патента на изобретение RU2375474C1

Изобретение относиться к области нецианидной технологии извлечения благородных металлов из руд кор выветривания, россыпных, золоторудных месторождений, в том числе комплексных, которые содержат уран и другие редкие элементы.

Оно может быть использовано для интенсификации отработки бедных руд, содержащих известное количество сульфидов углистых веществ или марганца. Наиболее предпочтительно осуществлять способ в регионах, в которых расположены азотные заводы.

В технологии переработки руд благородных металлов из большого числа известных растворителей тиосульфатные соли в экологическом отношении оцениваются как наиболее безопасные, поскольку они легко подвергаются биоразложению (Цветные металлы, 2005, №№ 5, 6). Это обстоятельство отражено в законодательных актах ряда стран Европы, США, Австралии.

Такое преимущество тиосульфатного варианта может оказаться решающим при организации отработки месторождений, расположенных как в густонаселенных частях страны, так и в районах Севера, которые весьма восприимчивы к экологическим нарушениям среды.

Известен способ тиосульфатного выщелачивания благородных металлов из руд, содержащих марганец (патент США 4369061, С22В 11/04, 1983, аналог). В варианте кучного выщелачивания способ успешно использовался компанией Newmont для переработки углеродсодержащих руд (Minerals Eng., 2001, vol 14, № 3, 135-174, прототип).

Известен тиосульфатно-сульфитный способ кучного выщелачивания окисленных руд коры выветривания, который освоен для отработки месторождения Жерек (Горный журнал, 2001, № 11, аналог). Авторы признают, что в укрупненных лабораторных условиях степень извлечения золота из рудного материала фракции - 10 мм по опробованной одностадийной технологии не превышает 70%.

Известны варианты интенсификации цианидной и хлоридной технологий.

Предложен способ предварительного окисления руды в кислой среде озоном перед цианированием в агитационных условиях (патент США 4752412, С01В 15/01, 1989, аналог). Окисление руды позволяет увеличить скорость растворения золота в 100 раз.

Известен способ окисления руды в кислой среде при кучном выщелачивании золота путем внесения непосредственно в рудный штабель окисленных минералов марганца (А.С. СССР 1785536, С22В 3/06, 1993, аналог). Способ малоэффективен и не рентабелен, поскольку дефицитный твердофазный реагент используется в реальных условиях не более чем на 25-30% из-за неравномерного распределения его в горной массе, недостаточной дисперсности и плохого контакта с фильтрующимся раствором. В горнохимической отрасли способ не нашел применения.

Техническими задачами предлагаемого способа являются: расширение числа типов перерабатываемых руд, отличающихся по вещественному и минеральному составу, повышение эффективности извлечения полезных компонентов по сравнению с одностадийным способом и обеспечение экологической безопасности на всех этапах технологического процесса и по его завершении.

Указанные цели достигаются тем, что технологический цикл разделяют на две стадии. На первой осуществляют глубокое кислотное вскрытие рудного материала: растворение оксидов и карбонатов, частичное разложение полевых шпатов и алюмосиликатов, окисление сульфидов, закисного железа в минеральной форме и в растворе.

На второй стадии нейтрализуют закисленную руду и выщелачивают благородные металлы в слабоаммиачной среде путем воздействия на разложенный и окисленный рудный материал трехкомпонентной смесью, включающей окислитель и комплексообразователь и состоящей из тиосульфата, сульфита и аммиаката меди.

На первой стадии рудный штабель орошают раствором серной кислоты. Полученный фильтрат, содержащий закисное железо, окисляют смесью воздуха и нитрозного газа, подкисляют и направляют в оборот до полного окисления руды. Нитрозный газ получают из сжиженного диоксида азота, каталитическим окислением аммиака по способу Оствальда либо восстановлением меланжа, «красной дымящей» или концентрированной азотной кислоты. В качестве восстановителей используют параформальдегид, метальдегид либо крахмал.

Окисление сернокислого фильтрата осуществляют в колонне насадочного типа при противоточной фильтрации жидкости и газа, либо в смесительном аппарате агитационного типа. Взаимодействие реакционных газов с раствором закисного железа ведут при определенном соотношении концентраций и скоростей подачи, предотвращающем утечку избытка диоксида азота в атмосферу. Процесс окисления железа (II) контролируют по соотношению Fe2+/Fе3+ в окисленном растворе. Образующийся при окислении железа (II) оксид азота связывается в растворе в нитрозокомплексы Fe(NO)SO4- и Fe2 (SO4)3·4NO. По завершении окисления руды штабель промывают, нейтрализуют и выщелачивают тиосульфатно-сульфитной смесью.

Весь технологический цикл извлечения благородных металлов из руды включает 10 основных операций:

- орошение рудного штабеля раствором серной кислоты;

- приготовление нитрозного газа;

- окисление фильтрата смесью воздуха и нитрозного газа;

- подкисление оборотного раствора;

- промывка рудного штабеля;

- нейтрализация остаточной кислотности руды;

- приготовление выщелачивающей смеси, содержащей тиосульфат, сульфит и аммиакат меди;

- корректировка рН;

- выщелачивание благородных металлов;

- переработка продуктивного раствора.

Основные химические реакции, составляющие двухстадийную схему извлечения благородных металлов из руд, могут быть сгруппированы по этапам:

1. Приготовление нитрозного газа (по Оствальду):

4 ккал;

2NO+O2→2NO2+26 ккал;

растворение двуокиси:

2NO22О→HNO2+НNO3;

растворение двуокиси в избытке кислорода:

4NO2+2Н2О+О2→4HNO3;

2. Окисление Fe2+ в растворе:

3Fe2++NО3-+4H+→3Fe3++NO-+2H2O,

2Fe2++2NO2-+4H+→2Fe3++2NO-+2Н2О;

3. Образование нитрозокомплексов:

FeSO4+NO→Fe(NO)SO4;

Fe2(SO4)3.+4NO→Fe2(SO4)3.·4NO;

4. Окисление пирита, содержащегося в руде:

FeS2+14Fe3++8Н2О→15Fe2++2SO42-+16Н+;

окисление пирита в кислой среде (частичное):

FeS2+2Fe3+→3Fe2++2S0;

окисление серы при низких рН и ОВП:

S0+6Fe3++4Н2О→SO42-+6Fe2++8Н+

5. Выщелачивание благородных металлов:

Au+5S2O32-+Cu(NH3)42+→Аu(S2O3)23-+4NH3+Сu(S2O3)35-;

Аu(S2O3)23--+2NH3→Au(NH3)2++2S2O32-;

в присутствии кислорода тиосульфат окисляется в сульфат и тетратионат:

S2O32-+O22O→2SO42-+2Н+;

2S2O32-+1/2O22O→S4O62-+2ОН-.

Эти реакции катализирует ион Сu2+.

Новизна предлагаемого способа состоит в последовательном применении трех окислителей: кислорода воздуха с катализатором - для окисления железа (II) в сернокислом фильтрате, оксидного железа в слабокислой среде - для окисления минералов вмещающих пород и оксидной меди в слабоаммиачной среде - для окисления благородных металлов. Усложнение технологической схемы направлено на расширение числа типов перерабатываемых руд, повышение степени извлечения благородных металлов и попутное выщелачивание редких элементов.

Экономичность способа обусловлена использованием для разложения руды серной кислоты, а для окисления железа (II) смеси воздуха и нитрозного газа. Наиболее рентабельные промышленные варианты получения нитрозного газа состоят в испарении сжиженного диоксида азота, либо каталитическом окислении аммиака по способу Оствальда. При отработке месторождений, отдаленных от азотных заводов, могут иметь практическое значение варианты получения нитрозного газа, основанные на химическом восстановлении меланжа, «красной дымящей» либо концентрированной азотной кислоты. В качестве восстановителей наиболее эффективны параформальдегид, метальдегид или крахмал.

Полезность двухстадийного способа состоит в повышении степени извлечения благородных металлов из руд до 77-83%, которая в одностадийном процессе выщелачивания не превышает 70%. Кроме того, предварительное окисление вмещающих пород обусловливает сокращение расхода оксидной меди на стадии выщелачивания благородных металлов.

Экологическая безопасность тиосульфатно-сульфитного способа выщелачивания определяется легкой окисляемостью компонентов раствора до сульфата. Удаление избытка медноаммиачного комплекса достигается промывкой. В отличие от цианидного варианта выщелачивания отработанная руда не требует химической дезактивации.

Наименее изученная часть двухстадийного способа - окисление железа (II) смесью воздуха и нитрозного газа была проверена в лабораторных условиях на моделированных и промышленных растворах от кислотного выщелачивания урановой руды. Одновременно опробовались два метода получения нитрозного газа.

Пример 1. Раствор для окисления приготавливался из семиводного гидрата сернокислого железа (II) и содержал 2,04 г/л Fе2+ и 0,10 г/л Fe3+. Нитрозный газ получался восстановлением азотной кислоты (уд. в. 1,4 г/см3), которая по каплям добавлялась в трехгорлую колбу, куда предварительно была помещена навеска метальдегида («сухого горючего»). Через две другие горловины пропускался ток воздуха, который смешивался с образующимся нитрозным газом и барботировался через приготовленный раствор закисного железа объемом 300 мл. Результаты опытов приведены в таблице 1.

Таблица 1
Результаты окисления железа (II)
рН Продолжительность цикла, 5 мин Степень окисления, % Продолжительность цикла, 10 мин Степень окисления, % ОВП, мВ Концентрация, г/л Концентрация, г/л Fe3+ Fe2+ Fe3+ Fe2+ 2,0 1,12 1,02 53 - - - 502 1,8 1,24 0,85 60 1,47 0,67 70 504 1,6 1,28 0,85 61 1,84 0,28 86 540 1,43 1,96 0,17 91 1,96 0,17 91 595 1,2 2,14 0 100 - - - 635 1,0 2,14 0 100 - - - 660

Пример 2. Производственный раствор от сернокислотного выщелачивания урановой руды, содержащий, г/л: H2SO4 - 9,26; Fe3+ - 6,66; Fe2+ - 5,38; Mn2+ - 2,2; U - 0,049, окислялся смесью воздуха и нитрозного газа, который получался восстановлением концентрированной НNО3 крахмалом. Результаты опытов приведены в таблице 2.

Таблица 2
Результаты окисления железа (II)
Продолжительность цикла, мин Содержание, г/л Степень окисления, % ОВП, мВ Fe3+ Fe2+ 10 9,74 2,3 57 465 20 11,53 0,51 91 522

Пример 3. Производственный раствор, содержащий 1,13 г/л Fe2+ при рН 1,1, пропускался через насадочную колонну высотой 60 см и диаметром 5 см, заполненную кольцами Рашига. Снизу раствор выпускался через водяной затвор. Смесь воздуха и нитрозного газа подавалась в нижнюю часть колонны через штуцер. Опыт продолжался 2 часа. Степень окисления железа в продолжении опыта составляла ~100% при ОВП раствора 623 мВ. Утечки диоксида азота в атмосферу не обнаружено.

Проведенные лабораторные опыты с моделированным и промышленными растворами показали эффективность окисления железа (II) кислородом воздуха при каталитическом действии нитрозного газа. Степень окисления порядка 90-100% достигалась в широком диапазоне концентрации при рН 1,5-1,0 за 5-20 мин.

Пример 4. Кислотная обработка и окисление раздробленного рудного материала фракции - 15 мм проводилась на алюмосиликатных рудах Ватутинского и Мичуринского месторождений в полупромышленном масштабе в колоннах диаметром 0,42 м и высотой 6,0 м. Опытные колонны вмещали соответственно 4,44 и 5,49 т руды. Проработка материала осуществлялась сернокислым раствором концентрации 30 г/л, содержащим до 3,7 г/л оксидного железа.

Продолжительность циклов составляла от 1,5 до 3 месяцев при плотности орошения в среднем 9,6 л/м2ч. Расход серной кислоты достигал 26,3 и 36,3 кг/т руды за весь цикл окисления.

Пример 5. Опытные работы в промышленном масштабе были проведены на алюмосиликатной руде Ватутинского месторождения фракции - 40 мм, опытный штабель вмещал 30 тыс.т руды, имея объем 14,7 тыс.м3, высоту 6,0 м, площадью

5300 м2. Штабель обрабатывался раствором кислоты средней концентрации 14 т/л, содержавшим до 3,7 г/л оксидного железа. Опыт показал, что по окончании окисления удельный расход кислоты составил 31,9 кг/т руды.

Пример 6. Кислотно-тиосульфатный способ переработки нецианируемой золото-серебряной руды опробовался в лабораторных условиях на комплексной руде месторождения Такели. Фракция 5-10 мм содержала (г/т): Ag - 325, Au - 0,55; Pb - 1,25%, Zn - 1,65%, Сu - 0,47%, As - 0,8%.

В результате предварительной обработки руды кислотой при концентрации 50 г/л, Ж:Т=2 в раствор переходило 3,06 г/л железа и 0,22 мг/л серебра. После завершения окисления руды, промывки и последующего тиосульфатного выщелачивания (10 г/л

2S2O3) степень извлечения серебра достигала 83-85%, золота 57-60%.

Пример 7. В лабораторных условиях разрабатывалась технология переработки нецианируемой полиметаллической руды месторождения Канджол, содержавшей 60 г/т Ag, 0,3 г/т Au, а также 0,17% Pb, 0,17% Zn, 0,12% As, 2,2% Mn. В минеральном составе обнаружены гетит, гидрогетит - 10-12%, пирит - 0,5%, а также галенит - 0,1%, пирротин - 0,1%, халькопирит - 0,1% и др.

Перед выщелачиванием тиосульфатом руда предварительно отрабатывалась раствором серной кислоты концентрации 85 г/л, содержащим 2-4 г/л оксидного железа, кислотная обработка продолжалась 17 часов при расходе 8,5 кг/т. После выщелачивания промытой руды раствором тиосульфата (10 г/л) степень извлечения серебра достигала 94,2-94,5%, золота 55-61%.

Пример 8. Опробовался в лабораторных условиях вариант извлечения золота и серебра из тиосульфатных растворов цементацией на цинковом порошке. В качестве продуктивных растворов использовались растворы, полученные в результате тиосульфатного выщелачивания золото-серебряных полиметаллических руд месторождений Такели и Канджол. Продуктивные растворы от выщелачивания руды месторождения такели содержали 325-335 мг/л серебра и 0,12 мг/л золота. Растворы подкислялись сернистой кислотой до рН 4,6-4,9 и обрабатывались цинковой пылью (90% Zn, 7% ZnO) при удельном расходе 0,5 г/л. В результате наблюдалось количественное осаждение обоих металлов (99%). Аналогичные результаты были получены при переработке растворов от выщелачивания руды месторождения Канджол.

Похожие патенты RU2375474C1

название год авторы номер документа
СПОСОБ ПОДЗЕМНОГО ВЫЩЕЛАЧИВАНИЯ БЛАГОРОДНЫХ МЕТАЛЛОВ ИЗ РУД 2007
  • Жагин Борис Петрович
RU2353763C1
ЭКОЛОГИЧЕСКИ ЧИСТЫЙ СПОСОБ ПОДЗЕМНОГО ВЫЩЕЛАЧИВАНИЯ БЛАГОРОДНЫХ МЕТАЛЛОВ, ПРЕИМУЩЕСТВЕННО ЗОЛОТА И СЕРЕБРА, ИЗ РУД НА МЕСТЕ ИХ ЗАЛЕГАНИЯ 1994
  • Жагин Борис Петрович
  • Видусов Тиль Эрвинович
  • Заболоцкий Александр Иванович
RU2074958C1
СПОСОБ ПОДЗЕМНОГО ВЫЩЕЛАЧИВАНИЯ БЛАГОРОДНЫХ МЕТАЛЛОВ ИЗ РУД 1996
  • Жагин Б.П.
RU2095444C1
СПОСОБ ИЗВЛЕЧЕНИЯ БЛАГОРОДНЫХ МЕТАЛЛОВ ИЗ УПОРНЫХ РУД И КОНЦЕНТРАТОВ 2007
  • Фокин Константин Сергеевич
  • Шаповалов Вячеслав Дмитриевич
RU2415955C2
КОМБИНИРОВАННЫЙ СПОСОБ КУЧНОГО ВЫЩЕЛАЧИВАНИЯ ЗОЛОТА ИЗ УПОРНЫХ СУЛЬФИДНЫХ РУД 2012
  • Заболоцкий Александр Иванович
  • Гребнев Геннадий Сергеевич
  • Федотов Александр Дмитриевич
  • Станков Дмитрий Владимирович
RU2502814C2
СПОСОБ КУЧНОГО БИОВЫЩЕЛАЧИВАНИЯ МАРГАНЦА ИЗ МАРГАНЕЦСОДЕРЖАЩИХ МАТЕРИАЛОВ 2018
  • Башлыкова Татьяна Викторовна
  • Аширбаева Евгения Александровна
  • Пахомова Галина Алексеевна
  • Фищенко Юлия Юрьевна
  • Бабич Игорь Николаевич
RU2686158C1
КУЧНОЕ БИОВЫЩЕЛАЧИВАНИЕ БЕДНОГО УПОРНОГО МИНЕРАЛЬНОГО СЫРЬЯ ПРИРОДНОГО И ТЕХНОГЕННОГО ПРОИСХОЖДЕНИЯ 2017
  • Башлыкова Татьяна Викторовна
  • Аширбаева Евгения Александровна
  • Фадина Ирина Борисовна
  • Мухаметшин Ильдар Хайдарович
  • Башлыкова Алёна Владимировна
RU2679724C1
СПОСОБ КУЧНОГО ВЫЩЕЛАЧИВАНИЯ ЗОЛОТА ИЗ УПОРНЫХ РУД 2014
  • Секисов Артур Геннадиевич
  • Ланков Борис Юрьевич
  • Гринченко Ирина Васильевна
  • Лавров Александр Юрьевич
  • Королев Вячеслав Сергеевич
  • Авилов Олег Николаевич
  • Зыков Николай Васильевич
  • Рубцов Юрий Иванович
  • Ложкин Леонид Владиславович
RU2580356C1
СПОСОБ ПЕРЕРАБОТКИ СУЛЬФИДНЫХ РУД И ПИРРОТИНОВОГО КОНЦЕНТРАТА 2008
  • Суханова Марина Александровна
  • Пивоварова Татьяна Александровна
  • Меламуд Виталий Самуилович
RU2367691C1
ГИДРОМЕТАЛЛУРГИЧЕСКИЙ СПОСОБ ИЗВЛЕЧЕНИЯ БЛАГОРОДНЫХ МЕТАЛЛОВ ИЗ УПОРНОЙ СУЛЬФИДНОЙ РУДЫ 1993
  • Дуглас Р.Шо[Us]
  • Лэрри Дж.Батер[Us]
RU2086682C1

Реферат патента 2009 года СПОСОБ ИЗВЛЕЧЕНИЯ БЛАГОРОДНЫХ МЕТАЛЛОВ ИЗ РУД

Изобретение относится к способу извлечения благородных металлов из руд кор выветривания, россыпных и золоторудных месторождений, в том числе комплексных, содержащих уран и другие редкие элементы. Способ включает кучное выщелачивание руды в виде рудного штабеля раствором смеси тиосульфата, сульфита и аммиаката меди, переработку продуктивного раствора цементацией и сорбцией. Перед выщелачиванием рудный штабель орошают сернокислым раствором. Полученный фильтрат, содержащий закисное железо, окисляют смесью воздуха и нитрозного газа. Образовавшийся раствор оксидного железа подкисляют и направляют в оборот на рудный штабель до полного окисления руды, после чего ее промывают и нейтрализуют. Нейтрализацию руды осуществляют растворами аммиака, щелочей, соды или извести. Техническим результатом является повышение эффективности способа. 4 з.п. ф-лы, 2 табл.

Формула изобретения RU 2 375 474 C1

1. Способ извлечения благородных металлов из руд, включающий кучное выщелачивание руды в виде рудного штабеля раствором смеси тиосульфата, сульфита и аммиаката меди, переработку продуктивного раствора цементацией и сорбцией, отличающийся тем, что перед выщелачиванием рудный штабель орошают сернокислым раствором, полученный фильтрат, содержащий закисное железо, окисляют смесью воздуха и нитрозного газа, образовавшийся раствор оксидного железа подкисляют и направляют в оборот на рудный штабель до полного окисления руды, после чего ее промывают и нейтрализуют.

2. Способ по п.1, отличающийся тем, что нитрозный газ получают из сжиженного диоксида азота.

3. Способ по п.1, отличающийся тем, что нитрозный газ получают взаимодействием меланжа, «красной дымящей» или концентрированной азотной кислоты с параформальдегидом, метальдегидом или крахмалом.

4. Способ по п.1, отличающийся тем, что нитрозный газ получают каталитическим окислением аммиака по способу Оствальда.

5. Способ по п.1, отличающийся тем, что нейтрализацию руды осуществляют растворами аммиака, щелочей, соды или извести.

Документы, цитированные в отчете о поиске Патент 2009 года RU2375474C1

Minerals Eng., 2001, vol.14, №3, p.135-174
СПОСОБ БИООКИСЛЕНИЯ ОГНЕУПОРНЫХ СУЛЬФИДНЫХ РУД 1994
  • Уильям Дж.Кор
RU2113522C1
СПОСОБ ПЕРЕРАБОТКИ ЗОЛОТОСОДЕРЖАЩИХ СУЛЬФИДНЫХ КОНЦЕНТРАТОВ 1992
  • Хмельницкая О.Д.
  • Муллов В.М.
  • Панченко А.Ф.
RU2023729C1
WO 9851827 A1, 19.11.1998
СПОСОБ ОПРЕДЕЛЕНИЯ ОГНЕСТОЙКОСТИ РАСТЯНУТЫХ ЭЛЕМЕНТОВ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ ЗДАНИЯ 2004
  • Ильин Николай Алексеевич
  • Сургачев Андрей Александрович
  • Тюрников Владимир Владимирович
  • Эсмонт Сергей Викторович
RU2282848C2
US 4571387 A, 18.02.1986
Способ и устройство для обнаружения спектральных линий поглощения или излучения на фоне сплошного спектра 1946
  • Соколов А.А.
SU71763A1
Способ проверки эффективности тормозных средств железнодорожного подвижного состава 1975
  • Зыков Юрий Валентинович
  • Сендеров Григорий Константинович
SU522978A1

RU 2 375 474 C1

Авторы

Жагин Борис Петрович

Даты

2009-12-10Публикация

2008-02-29Подача