Изобретение относится к металлургии титана и может быть использовано при переработке титансодержащего сырья хлорным методом с получением тетрахлорида титана.
Известен способ переработки титансодержащего сырья хлорированием путем барботирования хлорирующего агента через солевой расплав, содержащий углерод, хлориды железа, алюминия и щелочные металлы, при температуре 500-700°С с дальнейшей конденсацией тетрахлорида титана.
Для разделения газообразных и твердых продуктов хлорирования в процессе их образования на поверхность расплава хлоридов непрерывно загружают хлориды щелочных металлов (КСl, NaCl) при мольном отношении к образующимся хлоридам примесей, равном (1,2÷1,6):1. Из полученной парогазовой смеси конденсируют тетрахлорид титана в последовательно соединенных оросительных конденсаторах. Сконденсированный тетрахлорид титана из оросительных конденсаторов содержит 20-30 г твердых взвесей на 1 л тетрахлорида титана. Для получения конечного продукта - технического тетрахлорида титана с содержанием взвеси менее 1-2 г/л сконденсированный тетрахлорид титана одного из оросительных конденсаторов подвергают выпарке или фильтрации, откуда твердые примеси в виде пульпы возвращают в хлоратор. (Авт.св. СССР №361213, С22В 34/12, опубл. 23.03.1970 г.).
Недостатком способа является проведение сложных операций упаривания или фильтрации сконденсированного тетрахлорида титана, что существенно осложняет аппаратурное оформление процесса хлорирования исходного сырья и приводит к повышению себестоимости конечного продукта, а возврат твердых примесей в хлоратор непроизводительно увеличивает массу оборотных хлоридов и, тем самым, снижает производительность процесса в целом и увеличивает концентрацию хлоридов примесей в расплаве.
Известен также способ переработки титанового сырья хлорированием последнего в расплаве хлористых солей. («Титан» под ред. В.М.Гармата. - М.: Металлургии, 1983, с.273-300).
Данный способ предусматривает получение тетрахлорида титана и включает в себя стадии: измельчение титанового шлака и углеродного восстановителя; смешение этих компонентов и загрузку шихты в хлоратор на зеркало расплава хлоридов щелочных и щелочно-земельных металлов; хлорирование газообразным хлором или анодным хлоргазом при температуре 750-800°С и непрерывном обновлении расплава.
В результате хлорирования сырья образуется парогазовая смесь, состоящая из терахлорида титана и хлоридов примесей, а также непрохлорированный остаток, который выводят из хлоратора с отработанным расплавом хлоридов щелочных металлов.
Парогазовую смесь, содержащую тетрахлорид титана, последовательно очищают от твердых примесей. Очистку проводят сначала от более высококипящих твердых и жидких хлоридов, затем отделяют твердые хлориды от газообразных солевой очисткой и ведут конденсацию хлоридов в оросительном скруббере и оросительных конденсаторах для окончательного доулавливания тетрахлорида титана.
Пульпу тетрахлорида титана, полученную после оросительного скруббера, подают на орошение парогазовой смеси в контуре оросительного скруббера и в контуре хлоратора.
Способ имеет следующие недостатки:
- очистка от пыли твердых хлоридов в полых конденсаторах приводит к образованию комкообразных дымящих возгонов, что затрудняет их дальнейшую переработку;
- циркуляция пульпы из оросительного скруббера в контур оросительного скруббера и в контур хлоратора осуществляет теплосъем, но не позволяет регулировать его в зависимости от производительности хлоратора.
Эти недостатки снижают эффективность и технико-экономические показатели процесса.
Наиболее близким к заявленному способу переработки титансодержащего сырья является способ переработки титановых шлаков хлорированием, которое осуществляют следующим образом. Исходный титановый шлак и углеродистый восстановитель измельчают и смешивают их в требуемой пропорции. Затем полученную шихту загружают в хлоратор и хлорирование проводят при температуре не выше 750°С с линейной скоростью подачи хлора в хлоратор 20-30 м/с и соотношении хлора к шлаку (1,48÷2,62):1. Концентрацию двуокиси титана и восстановителя в расплаве хлоридов поддерживают на уровне 1÷4 и 3÷5% соответственно.
Парогазовая смесь, выходящая из хлоратора и состоящая из тетрахлорида титана, хлоридов железа, алюминия и твердых частиц, поступает в солевой скруббер. Солевую очистку осуществляют путем орошения парогазовой смеси солевым расплавом хлоридов щелочных металлов при температуре 550-700°С. После насыщения солевого расплава хлоридами примесей расплав хлоридов направляют в хлоратор.
Очищенный тетрахлорид титана и газообразные продукты (СО2, Na) поступают далее в оросительный скруббер, где с помощью орошения пульпой, состоящей из жидкого тетрахлорида титана и твердых взвесей, протекает процесс конденсации тетрахлорида титана. Расход пульпы составляет 80-100 т/т TiCl4. Пульпа, образовавшаяся в оросительном скруббере, циркулирует в контуре самого оросительного скруббера. Основную часть тетрахлорида титана конденсируют в оросительных конденсаторах с использованием в качестве оросительной жидкости тетрахлорида титана с температурой 90-105°С, 25-40°С и 0-(-15°С).
Для стабилизации температурного режима процесса хлорирования сырья и предотвращения повышения температуры выше 750°С отходящую парогазовую смесь подвергают орошению пульпой из оросительного скруббера. Расход пульпы - 2,0-3,0 тонны на тонну тетрахлорида титана.
Солевую очистку парогазовой смеси осуществляют в солевых скрубберах, работающих при прохождении парогазовой смеси через слой циркулирующего снизу вверх солевого расплава, который подают насосом или эрлифтом. При этом парогазовую смесь в скруббер подают перпендикулярно текущему сверху вниз по объему скруббера солевому расплаву. (См. патент РФ №2136772, С22В 34/12). Способ принят за прототип.
Недостатками способа являются:
- ограничение температуры в 750°С сдерживает возможность увеличения производительности хлоратора, поскольку температура процесса является определяющим фактором повышения скорости хлорирования сырья;
- орошение парогазовой смеси хлоратора пульпой оросительного скруббера в количестве 2,0-3,0 т на тонну тетрахлорида титана не обеспечивает равномерный съем (отвод) тепла и высокую полноту улавливания хлоридов примесей и твердых частиц, в результате чего происходит образование гарнисажа хлоридов примесей на своде и в газоходе хлоратора. Это приводит к росту сопротивления на выходе парогазовой смеси из газохода хлоратора, а также ухудшает условия теплопередачи через свод и газоход хлоратора. Эти недостатки ухудшают работу хлоратора, что сопровождается снижением срока его непрерывной работы и снижением эффективности процесса конденсации хлоридов;
- при орошении парогазовой смеси пульпой из оросительного скруббера происходит концентрирование твердых частиц (углерод, частицы шлака), хлоридов железа, алюминия в солевом скруббере; данное явление сопровождается образованием наростов из этих компонентов, что приводит к значительному росту сопротивления солевого скруббера, нарушению температурного режима последнего и требует проведения операции его чистки, что отрицательно отражается на работе всей технологической цепочки, а также снижает эффективность последующих стадий - работы аппаратов конденсационной системы.
Недостатком осуществления солевой очистки в прототипе является быстрое зарастание газоходов солевого фильтра, требующее остановки и чистки аппарата.*)
*)Описание работы солевого скруббера, см. «Редкие и рассеянные элементы» С.С.Коровин, Д.В.Дробот и др., М., МИСиС, 1999, с.339).
Указанные недостатки сдерживают возможность повышения эффективности процесса в целом и не позволяют осуществить плавное и надежное его регулирование.
Техническим результатом заявленного изобретения является интенсификация процесса хлорирования сырья и повышение эффективности процесса солевой очистки парогазовой смеси.
Технический результат достигается тем, что в способе переработки титансодержащего сырья с получением тетрахлорида титана, включающем подготовку шихты, загрузку ее в хлоратор с расплавом хлоридов металлов, хлорирование подачей хлорсодержащего агента через хлороподводы в расплав хлоридов металлов с непрерывным обновлением расплава с получением парогазовой смеси, содержащей тетрахлорид титана, последующую солевую очистку парогазовой смеси солевым расплавом хлоридов щелочных металлов и очистку в оросительном скруббере с конденсацией хлоридов примесей в пульпе жидкого тетрахлорида титана, используемого в качестве орошающей жидкости в скруббере, циркуляцию образовавшейся пульпы в контуре оросительного скруббера и контуре хлоратора, выделение тетрахлорида титана конденсацией в оросительном конденсаторе, согласно изобретению хлорирование ведут с использованием в качестве хлорсодержащего агента газообразного хлора и/или анодного хлоргаза при подаче с линейной скоростью 70-140 м/с в каждом хлороподводе, подачу пульпы из оросительного скруббера в контур хлоратора ведут с температурой пульпы 70-110°С, при этом пульпу сначала контактирует с отходящей из хлоратора парогазовой смесью, а затем с зеркалом расплава хлоридов металлов при плотности орошения поверхности расплава 1,5-4,5 т/м2 поверхности в час, солевую очистку парогазовой смеси проводят путем контактирования потока парогазовой смеси, выходящей из хлоратора, с поверхностью расплава хлоридов щелочных металлов при линейной скорости потока парогазовой смеси над расплавом 25-100 см/с и поддержании температуры расплава 350-400°С, концентрации свободных хлоридов щелочных металлов 0,5-3,0 мас.% и с обработкой поверхностного слоя расплава газовым потоком инертного газа со скоростью подачи 40-120 м3/ч; после солевой очистки парогазовой смеси отработанный расплав растворяют в слабокислом растворе соляной кислоты, полученную пульпу фильтруют, фильтрат, содержащий хлориды железа и алюминия нейтрализуют до рН 3-5, полученный осадок смеси гидроксидов железа и алюминия сушат с получением товарного продукта - высокодисперсного коагулянта.
Сущность способа заключается в следующем.
Хлорирование исходного сырья в расплаве хлористых солей с подачей хлорирующего агента с линейной скоростью в пределах 70-140 м/с позволяет интенсифицировать процесс, так как данный параметр приводит к эффективному дроблению пузырька хлора с соответствующим существенным увеличением поверхности взаимодействия реагирующих фаз.
Для стабилизации температуры процесса хлорирования в заданном интервале температур и эффективности процесса очистки парогазовой смеси от примесей пульпу из оросительного скруббера на зеркало расплава хлоридов подают с плотностью подачи 1,5-4,5 т/м2·ч и с температурой 70-110°С.
Эти параметры, связывающие количество пульпы с единицей площади расплава и со скоростью подачи, обеспечивают достижение большей равномерности орошения пульпой парогазовой смеси, образующейся в процессе хлорирования. Это позволяет плавно регулировать и поддерживать температурный режим хлорирования, максимально эффективно на этой стадии очищать парогазовую смесь от твердых частиц шихты, эффективно осуществлять теплосъем и предотвращать образование гарнисажа (наростов) на стенках и газоходе хлоратора.
Дальнейшую очистку парогазовой смеси от примесей осуществляют путем ее контакта с солевой ванной, представляющей собой плав хлоридов щелочных металлов, железа и алюминия. В составе солевой ванны присутствует несвязанный хлорид щелочного металла в количестве 0,5-3,0% от массы плава хлоридов. Температуру в солевой ванне поддерживают в пределах 350-400°С, а в поверхностный слой расплава хлоридов подают азот в количестве 40-120 м3/ч, и парогазовую смесь пропускают над поверхностью солевой ванны хлоридов с линейной скоростью 25-100 см/с.
Заявленный интервал линейной скорости пропускания парогазовой смеси в сочетании с ее подачей в плоскости, параллельной поверхности расплава, и содержанием в плаве хлоридов несвязанного хлорида щелочного металла 0,5-3,0 мас.% существенно повышает эффективность очистки парогазовой смеси от хлоридов железа и алюминия и степень улавливания пылевидных частиц хлорируемой шихты, а заявленный низкий интервал температуры ванны плава хлоридов (350-400°С) существенно снижает вероятность перехода примесей на стадию конденсации тетрахлорида титана в оросительных конденсаторах.
Подача азота в ванну плава хлоридов в заявленном количестве создает условия фонтанирующего режима (вспенивания поверхностного слоя) с увеличением поверхности взаимодействия парогазовой смеси с плавом хлоридов. Это повышает эффективность осаждения примесей и улучшает условия массо-теплообмена между реагирующими фазами.
После насыщения ванны плава хлоридов хлоридными примесями плав хлоридов частично сливают и передают на переработку с получением дополнительного товарного продукта - порошкообразного коагулянта.
Парогазовая смесь после контакта с поверхностью солевой ванны хлоридов поступает на стадию конденсации тетрахлорида в оросительном скруббере и далее в оросительных конденсаторах. Парогазовую смесь, поступающую в оросительный скруббер, орошают пульпой, циркулирующей в контуре оросительного скруббера, температуру которой поддерживают в пределах 70-110°С. Определенную часть пульпы подают на стадию хлорирования сырья для стабилизации температурного режима. Заявленный интервал температуры, подаваемой в контур хлоратора пульпы, и плотность ее подачи в хлоратор на зеркало расплава позволяют более мягко и точно поддерживать параметры хлорирования сырья в требуемом технологическом режиме.
Ступенчатая конденсация тетрахлорида титана в оросительных конденсаторах, которую проводят так же, как и в прототипе с использованием в качестве оросительной жидкости тетрахлорида титана с температурой от 90-105°С до 0-(-15)°С, обеспечивает эффективность конденсации предварительно очищенной парогазовой смеси с получением конечного продукта процесса хлорирования титансодержащего сырья - тетрахлорида титана, содержащего в своем составе не более 0,8÷1,1 г/л твердых примесей.
Обоснование параметров.
Хлорирование исходного сырья в расплаве хлористых солей проводят с подачей хлорирующего агента с линейной скоростью в пределах 70-140 м/с.
При подаче хлорирующего агента с линейной скоростью ниже 70 м/с скорость и полнота хлорирования уменьшается, следовательно, падает производительность процесса хлорирования. Кроме того, образуется большее количество отходов, падает извлечение в конечный продукт - тетрахлорид титана.
При подаче хлорирующего агента с линейной скоростью выше 140 м/с падает степень усвоения хлора и увеличивается его проскок в парогазовую смесь, непроизводительно увеличивается расход хлора и ухудшаются санитарные условия труда.
На процесс хлорирования в контур хлоратора из оросительного скруббера подают пульпу с температурой 70-110°С.
При подаче пульпы с температурой ниже 70°С наблюдается резкое снижение температуры парогазовой смеси и происходит зарастание газоходов, в результате падает производительность процесса хлорирования из-за остановки хлоратора и чистки газоходов.
При подаче пульпы с температурой выше 110°С резко увеличивается нагрузка на все аппараты конденсационной системы (солевой скруббер, оросительный конденсатор), так как предварительное снижение температуры парогазовой смеси незначительно и эффективность процесса солевой очистки падает.
Плотность орошения поверхности расплава пульпой составляет 1,5-4,5 т на 1 м2 поверхности в час.
При плотности орошения менее 1,5 т/м2 поверхности в час не достигается эффективность очистки от хлоридов примесей (железа, алюминия).
При плотности орошения более 4,5 т/м2 поверхности в час уменьшается необходимое для эффективной очистки время контакта пульпы с парогазовой смесью, снижается степень очистки и резко возрастает нагрузка на конденсационную систему.
Солевую очистку проводят путем контактирования потока парогазовой смеси, выходящей из хлоратора, с поверхностью расплава солевого фильтра при линейной скорости потока парогазовой смеси над расплавом 25-100 см/с и поддержании температуры расплава 350-400°С, концентрации свободного хлорида щелочного металла 0,5-3,0 мас.% и с обработкой поверхностного слоя расплава потоком инертного газа, например азота, со скоростью подачи 40-120 м3 /ч.
При линейной скорости потока парогазовой смеси над расплавом ниже 25 см/с и поддержании температуры расплава ниже 350°С падает производительность солевого фильтра и снижается эффективность улавливания твердых хлоридов и непрореагировавшего сырья.
При линейной скорости потока парогазовой смеси над расплавом выше 100 см/с и поддержании температуры расплава выше 400°С снижается эффективность очистки от твердых хлоридов, увеличивается проскок хлора в парогазовую смесь и возрастает нагрузка на оросительный конденсатор.
Свободные хлориды щелочных металлов обеспечивают связывание хлоридов примесей в высококипящие комплексные соединения, например NaFeCl4.
При концентрации свободного хлорида щелочного металла ниже 0,5 мас.% снижается степень улавливания хлоридов примесей и частиц непрореагировавшего сырья.
При концентрации свободного хлорида щелочного металла выше 3,0 мас.% нецелесообразно увеличивает расход щелочных реагентов.
Обработка поверхностного слоя расплава потоком инертного газа со скоростью подачи ниже 40 м3/ч не обеспечивает увеличение поверхности контакта парогазовой смеси с расплавом и снижает эффективность очистки.
Обработка поверхностного слоя расплава потоком инертного газа со скоростью подачи выше 120 м3/ч непроизводительно увеличивает расход инертного газа и ухудшает контакт парогазовой смеси с расплавом.
Способ иллюстрируется примерами.
Пример 1.
Хлорированию подвергали титановые шлаки, содержащие ТiO2 87-88 мас.%. Титановый шлак измельчали и смешивали с коксом для получения шихты. Хлорирование вели при температуре 720-730°С в расплаве солей хлоридов щелочных металлов и хлоридов железа при концентрации диоксида титана 2,0-2,5 мас.% и восстановителя 4,0-4,5 мас.% при мольном соотношении хлоридов калия и натрия к сумме хлоридов железа и алюминия более 1,0. В хлоратор подавали анодный хлоргаз по 4 хлороподводам с линейной скоростью подачи 85-90 м/с в каждом при соотношении хлора и шлака (1,5-1,6):1.
Образующиеся парообразные хлориды в виде парогазовой смеси (ПГС), содержащей тетрахлорид титана, хлориды железа, алюминия, калия и натрия и твердые частицы исходных компонентов (шлака, кокса) орошали пульпой, поступающей из оросительного скруббера. Температура пульпы 85°С, плотность орошения ПГС 3,0-3,2 т/м2·ч, при этом происходит в основном очистка ПГС от твердых непрореагировавших частиц шихты. После очистки от примесей ПГС направляли на солевую очистку в солевой скруббер. Температура солевой ванны скруббера 370-375°С, содержание несвязанных хлоридов щелочных металлов 1,5-1,7% от массы солевого расплава, а линейная скорость потока ПГС над поверхностью солевой ванны хлоридов составляла 50-55 см/с. Контактирование ПГС с поверхностью солевой ванны расплава осуществляли одновременно с обработкой поверхностного слоя расплава газовым потоком азота. Расход азота составлял 65-70
м3/ч.
При солевой очистке в расплаве хлоридов щелочных металлов из ПГС в расплав переходят непрореагировавшие частицы шихты, твердые хлориды железа, алюминия. После насыщения расплава его сливали и перерабатывали с целью получения коагулянтов. Для этого отработанный расплав растворяли в слабокислом растворе соляной кислоты (концентрация соляной кислоты 5-7 г/л) до получения пульпы с Т:Ж=1:3.
Пульпу фильтровали, фильтрат, содержащий растворенные хлориды железа и алюминия, нейтрализовали щелочным реагентом, например раствором NaOH, до рН 3-5, с осаждением гидроксидов железа и алюминия.
Осадок гидроксидов промывали, сушили с получением сыпучего порошка, являющегося высокодисперсным коагулянтом.
Частично очищенную в солевом скруббере ПГС направляли в оросительный скруббер, где происходит дальнейшая очистка ПГС от хлоридов железа, алюминия и других высококипящих хлоридов (натрия и калия). В качестве оросительной жидкости использовали пульпу тетрахлорида титана, полученную в процессе конденсации. В оросительном скруббере происходит улавливание твердых хлоридов примесей и частичная конденсация тетрахлорида титана с образованием пульпы, которую направляли на циркуляцию в контур хлоратора и в контур самого оросительного скруббера для охлаждения пульпы. Температуру пульпы в оросительном скруббере поддерживали на уровне 80-90°С.
Очищенную ПГС направляли на ступенчатую конденсацию в оросительные конденсаторы. Первую ступень конденсации осуществляли при температуре 90-105°С, вторую - при температуре 25-40°С и окончательную конденсацию тетрахлорида титана проводили при температуре 0-(-15)°С.
Конечный продукт - жидкий тетрахлорид титана выводили из системы оросительных конденсаторов.
Выход титана в конечный продукт составляет 96,3%, содержание твердых примесей в тетрахлориде титана - 0,8 г/л.
Пример 2.
Хлорированию подвергали титановые шлаки, содержащие ТiO2 87-88 мас.%. Титановый шлак измельчали и смешивали с коксом для получения шихты. Хлорирование вели при температуре 740-760°С в расплаве солей хлоридов щелочных металлов и хлоридов железа при концентрации диоксида титана 3,0-3,2 мас.% и восстановителя 5,0-5,1 мас.% при мольном соотношении хлоридов калия и натрия к сумме хлоридов железа и алюминия более 1,0. В хлоратор подавали газообразную смесь, содержащую 70% анодного хлоргаза и 30% газообразного хлора, по 4 хлороподводам с линейной скоростью подачи 75-85 м/с в каждом при соотношении хлора и шлака (1,5-1,6):1.
Образующиеся парообразные хлориды в виде парогазовой смеси (ПГС), содержащей тетрахлорид титана, хлориды железа, алюминия, калия и натрия и твердые частицы исходных компонентов (шлака, кокса), орошали пульпой, поступающей из оросительного скруббера. Температура пульпы 90°С, плотность орошения ПГС 2,6-3,0 т/м2·ч, при этом происходит в основном очистка ПГС от твердых не прореагировавших частиц шихты. После очистки от примесей ПГС направляли на солевую очистку в солевой скруббер. Температура солевой ванны скруббера 370-375°С, содержание несвязанных хлоридов щелочных металлов 2,0-2,3% от массы солевого расплава, а линейная скорость потока ПГС над поверхностью солевой ванны хлоридов составляла 65-75 см/с. Контактирование ПГС с поверхностью солевой ванны расплава осуществляли одновременно с обработкой поверхностного слоя расплава газовым потоком азота. Расход азота составлял 50-60
м3/час.
При солевой очистке в расплаве хлоридов щелочных металлов из ПГС в расплав переходят непрореагировавшие частицы шихты, твердые хлориды железа, алюминия. После насыщения расплава его сливали и перерабатывали с целью получения коагулянтов. Для этого отработанный расплав растворяли в слабокислом растворе соляной кислоты (концентрация соляной кислоты 5-7 г/л) до получения пульпы с Т:Ж=1:3.
Пульпу фильтровали, фильтрат, содержащий растворенные хлориды железа и алюминия, нейтрализовали щелочным реагентом, например раствором NaOH, до рН 3-5, с осаждением гидроксидов железа и алюминия. Осадок гидроксидов промывали, сушили с получением сыпучего порошка, являющегося высокодисперсным коагулянтом.
Частично очищенную в солевом скруббере ПГС направляли в оросительный скруббер, где происходит дальнейшая очистка ПГС от хлоридов железа, алюминия и других высококипящих хлоридов (натрия и калия). В качестве оросительной жидкости использовали пульпу тетрахлорида титана, полученную в процессе конденсации. В оросительном скруббере происходит улавливание твердых хлоридов примесей и частичная конденсация тетрахлорида титана с образованием пульпы, которую направляли на циркуляцию в контур хлоратора и в контур самого оросительного скруббера для охлаждения пульпы. Температуру пульпы в оросительном скруббере поддерживали на уровне 80-90°С.
Очищенную ПГС направляли на ступенчатую конденсацию в оросительные конденсаторы. Первую ступень конденсации осуществляли при температуре 90-105°С, вторую - при температуре 25-40°С и окончательную конденсацию тетрахлорида титана проводили при температуре 0-(-15)°С.
Конечный продукт - жидкий тетрахлорид титана выводили из системы оросительных конденсаторов.
Выход титана в конечный продукт составляет 96,3%, содержание твердых примесей в тетрахлориде титана - 0,7 г/л.
Таким образом, заявленное изобретение позволяет:
- увеличить производительность процесса хлорирования;
- повысить качество технического тетрахлорида титана за счет снижения содержания твердых примесей;
- увеличить срок службы всего оборудования: хлоратора, солевого скруббера, конденсационной системы за счет более эффективной очистки парогазовой смеси от твердых примесей.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПЕРЕРАБОТКИ ТИТАНОВЫХ ШЛАКОВ | 1998 |
|
RU2136772C1 |
СПОСОБ ПОЛУЧЕНИЯ ХЛОРИДОВ ТУГОПЛАВКИХ МЕТАЛЛОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2000 |
|
RU2172785C1 |
Способ автоматического управления процессом получения хлоридов металлов | 1991 |
|
SU1820892A3 |
УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ ХЛОРИДОВ РЕДКИХ МЕТАЛЛОВ | 1995 |
|
RU2095313C1 |
СПОСОБ ПРОИЗВОДСТВА МАГНИЯ И ХЛОРА ИЗ ОКСИДНО-ХЛОРИДНОГО СЫРЬЯ | 2008 |
|
RU2402642C2 |
Способ получения тетрахлорида титана из парогазовой смеси | 1975 |
|
SU558861A1 |
СПОСОБ ПЕРЕРАБОТКИ ВАНАДИЕВОГО ПРОМПРОДУКТА | 2000 |
|
RU2175358C1 |
аСЕССЮЗНАЯ I | 1973 |
|
SU361213A1 |
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ ТЕХНОГЕННОГО ВАНАДИЕВОГО СЫРЬЯ | 2001 |
|
RU2192489C2 |
СПОСОБ ОБЕЗВРЕЖИВАНИЯ ОТХОДЯЩИХ ГАЗОВ ПРОЦЕССА ХЛОРИРОВАНИЯ ТИТАНСОДЕРЖАЩЕГО СЫРЬЯ И УТИЛИЗАЦИИ ОТХОДОВ ОБЕЗВРЕЖИВАНИЯ ОТХОДЯЩИХ ГАЗОВ | 2010 |
|
RU2441691C1 |
Изобретение относится к металлургии титана и может быть использовано при переработке титансодержащего сырья хлорным методом с получением тетрахлорида титана. Способ включает подготовку шихты, загрузку ее в хлоратор с расплавом хлоридов металлов, хлорирование подачей хлорсодержащего агента через 4 хлороподвода в расплав хлоридов металлов с непрерывным обновлением расплава с получением парогазовой смеси, содержащей тетрахлорид титана. Затем ведут солевую очистку парогазовой смеси солевым расплавом хлоридов щелочных металлов и очистку в оросительном скруббере с конденсацией хлоридов примесей в пульпе жидкого тетрахлорида титана, используемого в качестве орошающей жидкости в скруббере, циркуляцию образовавшейся пульпы в контуре оросительного скруббера и контуре хлоратора, выделение тетрахлорида титана конденсацией в оросительном конденсаторе. При этом хлорирование ведут с использованием в качестве хлорсодержащего агента газообразного хлора и/или анодного хлоргаза, пульпу сначала контактируют с отходящей из хлоратора парогазовой смесью, а затем с зеркалом расплава хлоридов металлов. Солевую очистку парогазовой смеси проводят путем контактирования потока парогазовой смеси, выходящей из хлоратора, с поверхностью расплава хлоридов щелочных металлов при поддержании температуры расплава 350-400°С, концентрации свободных хлоридов щелочных металлов 0,5-3,0 мас.% и с обработкой поверхностного слоя расплава газовым потоком инертного газа со скоростью подачи 40-120 м3/ч. Техническим результатом является интенсификация процесса переработки. 1 з.п. ф-лы.
1. Способ переработки титансодержащего сырья с получением тетрахлорида титана, включающий подготовку шихты, загрузку ее в хлоратор с расплавом хлоридов металлов, хлорирование подачей хлорсодержащего агента через 4 хлороподвода в расплав хлоридов металлов с непрерывным обновлением расплава с получением парогазовой смеси, содержащей тетрахлорид титана, последующую солевую очистку парогазовой смеси солевым расплавом хлоридов щелочных металлов и очистку в оросительном скруббере с конденсацией хлоридов примесей в пульпе жидкого тетрахлорида титана, используемого в качестве орошающей жидкости в скруббере, циркуляцию образовавшейся пульпы в контуре оросительного скруббера и контуре хлоратора, выделение тетрахлорида титана конденсацией в оросительном конденсаторе, отличающийся тем, что хлорирование ведут с использованием в качестве хлорсодержащего агента газообразного хлора и/или анодного хлоргаза при подаче с линейной скоростью 70-140 м/с в каждом хлороподводе, подачу пульпы из оросительного скруббера в контур хлоратора ведут с температурой пульпы 70-110°С, при этом пульпу сначала контактируют с отходящей из хлоратора парогазовой смесью, а затем с зеркалом расплава хлоридов металлов при плотности орошения поверхности расплава 1,5-4,5 т/м2 поверхности в час, солевую очистку парогазовой смеси проводят путем контактирования потока парогазовой смеси, выходящей из хлоратора, с поверхностью расплава хлоридов щелочных металлов при линейной скорости потока парогазовой смеси над расплавом 25-100 см/с и поддержании температуры расплава 350-400°С, концентрации свободных хлоридов щелочных металлов 0,5-3,0 мас.% и с обработкой поверхностного слоя расплава газовым потоком инертного газа со скоростью подачи 40-120 м3/ч.
2. Способ по п.1, отличающийся тем, что после солевой очистки парогазовой смеси отработанный расплав растворяют в слабокислом растворе соляной кислоты, полученную пульпу фильтруют, фильтрат, содержащий хлориды железа и алюминия, нейтрализуют до рН 3-5, полученный осадок смеси гидроксидов железа и алюминия сушат с получением товарного продукта - высокодисперсного коагулянта.
СПОСОБ ПЕРЕРАБОТКИ ТИТАНОВЫХ ШЛАКОВ | 1998 |
|
RU2136772C1 |
СУДОВАЯ ДВЕРЬ | 1996 |
|
RU2105696C1 |
СПОСОБ КОНТРОЛЯ УСПЕШНОГО И НЕУСПЕШНОГО АВТОМАТИЧЕСКОГО ПОВТОРНОГО ВКЛЮЧЕНИЯ ВЫКЛЮЧАТЕЛЕЙ С ОПРЕДЕЛЕНИЕМ ВИДА КОРОТКОГО ЗАМЫКАНИЯ В СЕКЦИОНИРОВАННОЙ ЛИНИИ КОЛЬЦЕВОЙ СЕТИ | 2013 |
|
RU2551380C1 |
КОНТРОЛЛЕР МАШИНИСТА | 2007 |
|
RU2325721C1 |
Реверсивный генератор | 1980 |
|
SU1026286A1 |
US 2006051267 A1, 09.03.2006 | |||
Способ трансдуоденальной папиллосфинктеротомии | 1984 |
|
SU1204198A1 |
Авторы
Даты
2010-01-20—Публикация
2008-06-23—Подача