Предлагаемое изобретение относится к неразрушающим методам исследования и может быть использовано для контроля внутренних структур объектов их геометрических параметров и определения их физических характеристик.
Известен ультразвуковой дефектоскоп, содержащий импульсный лазер, оптически прозрачную пластину, пластину из поглощающего оптическое излучение материала и приемник ультразвука, при этом оптически поглощающая пластина выполнена в виде плоско-вогнутой линзы, а поглощающая пластина - в виде плоско-выпуклой линзы, которые сопряжены между собой сферическими поверхностями (1).
Недостатком данного устройства является невозможность его использования при одностороннем доступе к объекту контроля.
Наиболее близким к предлагаемому лазерно-ультразвуковому дефектоскопу является устройство, описанное в (2). Оно содержит импульсный лазер, соединенный через оптическое волокно с оптико-акустическим преобразователем, а также пьезоприемник, соединенный через усилитель с аналого-цифровым преобразователем, подключенным к компьютеру. К недостаткам известного устройства следует отнести необходимость пропускания излучения лазера сквозь приемник ультразвука, что создает значительные трудности при практической реализации.
Предлагаемое устройство отличается от известного тем, что оптико-акустический преобразователь в нем выполнен в виде единого блока и содержит пластину оптико-акустического генератора, помещенную между исследуемым объектом и прозрачным цилиндром, на торце которого расположен пьезопреобразователь, а фаска цилиндра сопряжена через оптическую систему с оптоволокном. При этом акустические импедансы пластины и цилиндра равны.
Возможность реализации.
На Фиг.1 приведена схема лазерно-ультразвукового дефектоскопа. Он содержит:
1 - лазер с модуляцией добротности и высокой частотой повторения импульсов, содержащий на выходе адаптер для ввода излучения в оптическое волокно;
2 - силовое оптическое волокно для передачи лазерного излучения в оптико-акустический преобразователь;
3 - оптико-акустический преобразователь для преобразования лазерных импульсов в акустические, передачи их в исследуемую среду и регистрации отраженных и рассеянных назад акустических сигналов, содержащий оптико-акустический генератор, оптико-акустическую призму, широкополосный пьезопреобразователь и зарядовый предусилитель;
4 - скоростной прецизионный аналого-цифровой преобразователь, обеспечивающий перевод электрического сигнала оптико-акустического преобразователя в цифровую форму, временное запоминание его и передачу по скоростной линии в компьютер;
5 - комбинированный многофункциональный блок питания, обеспечивающий электропитание лазера, оптико-акустического преобразователя и аналого-цифрового преобразователя;
6 - систему обработки данных, включающую компьютер, связанный скоростной линией передачи данных с аналого-цифровым преобразователем и программным обеспечением, обеспечивающим прием цифровых данных, их спектральную обработку и отображение результатов на экране монитора, а также интерактивное управление процессом передачи и обработки данных;
7 - специализированный изолированный корпус, в котором помещаются лазер, аналого-цифровой преобразователь и блок питания.
Управление и работа системы осуществляются от компьютера, а синхронизация работы лазера производится специальными сигналами, вырабатываемыми в блоке аналого-цифрового преобразователя. Старт-считывание сигнала осуществляется по импульсу фотодиода, согласованному с лазерным импульсом.
Схема оптико-акустического преобразователя 3 приведена на Фиг.2. Оптико-акустический преобразователь 3 содержит прозрачный для лазерного излучения цилиндр 8 с плоскопараллельными основаниями, на которых размещены оптико-акустический генератор 9 и широкополосный пьезоприемник 10. Оптико-акустический генератор 9 представляет собой плоскопараллельную пластину, выполненную из материала, поглощающего лазерное излучение, имеющего высокое значение коэффициента теплового расширения и согласованного по акустическому импедансу с материалом цилиндра 8 (например, из полимера). Облучение оптико-акустического генератора производится коротким лазерным импульсом с помощью формирующей лазерный пучок оптической системы 11, сопрягаемой с волокном 2, через фаску 12 на поверхности цилиндра 8, образованной на его торце с закрепленным пьезоприемником 10.
Дефектоскоп работает следующим образом. Оптико-акустический генератор 9 приводится в акустический контакт с исследуемым объектом 13. Лазерный импульс поступает с лазера 1 через оптоволокно 2, оптическую систему 11, фаску 12 и прозрачное тело цилиндра 8 на пластину оптико-акустического генератора 9. Последний излучает акустический импульс в прозрачный цилиндр 9 и исследуемый объект 13. Рассеянные в объекте акустические импульсы через оптико-акустический генератор 10 и прозрачный цилиндр 9 попадают на пьезоприемник 11, и его электрический сигнал, усиленный усилителем 14, поступает в аналого-цифровой преобразователь 4.
На Фиг.3 показан пример сигнала оптико-акустического преобразователя. По времени прихода рассеянных импульсов определяют глубину нахождения дефекта, а по измеренной толщине объекта и времени прихода сигнала, отраженного от его тыльной поверхности, - скорость ультразвука в объекте контроля.
Источники информации
1. Авторское свидетельство СССР №849072, кл. G01N 29/04.
2. Патент России №2232983, кл. G01N 29/04.
название | год | авторы | номер документа |
---|---|---|---|
ЛАЗЕРНЫЙ УЛЬТРАЗВУКОВОЙ ДЕФЕКТОСКОП | 2010 |
|
RU2544257C2 |
ОПТИКО-АКУСТИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ ЛАЗЕРНО-УЛЬТРАЗВУКОВОГО ДЕФЕКТОСКОПА | 2022 |
|
RU2793566C1 |
СПОСОБ ЛАЗЕРНОЙ ОПТИКО-АКУСТИЧЕСКОЙ ТОМОГРАФИИ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ (ВАРИАНТЫ) | 2011 |
|
RU2486501C2 |
Способ импульсно-периодического лазерно-ультразвукового контроля твердых материалов и устройство для его осуществления | 2017 |
|
RU2653123C1 |
СПОСОБ ЛАЗЕРНО-АКУСТИЧЕСКОГО КОНТРОЛЯ ТВЕРДЫХ МАТЕРИАЛОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2002 |
|
RU2232983C2 |
УСТРОЙСТВО ЛАЗЕРНОГО ВИБРОПРЕОБРАЗОВАТЕЛЯ | 2012 |
|
RU2496102C1 |
Устройство для лазерно-акустического контроля твердых и жидких сред | 2018 |
|
RU2732470C2 |
СПОСОБ ИЗМЕРЕНИЯ ИЗМЕНЕНИЯ СКОРОСТИ РАСПРОСТРАНЕНИЯ ГОЛОВНОЙ УЛЬТРАЗВУКОВОЙ ВОЛНЫ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2016 |
|
RU2643232C1 |
Способ определения структурных характеристик изделий из полимерных композиционных материалов и устройство для его осуществления | 2023 |
|
RU2809932C1 |
Устройство для определения и контроля скоростей поверхностных и продольных акустических волн в материалах при квазистатических и циклических нагрузках | 2016 |
|
RU2652520C1 |
Использование: для контроля внутренних структур объектов, а также их геометрических параметров и физических характеристик. Сущность изобретения заключается в том, что лазерно-ультразвуковой дефектоскоп содержит импульсный лазер, соединенный через оптоволокно с оптико-акустическим преобразователем, а также пьезоприемник, соединенный через усилитель с аналого-цифровым преобразователем, подключенным к компьютеру, при этом оптико-акустический преобразователь выполнен в виде единого блока, расположенного на исследуемом объекте, и содержит пластину оптико-акустического генератора, помещенную между исследуемым объектом и прозрачным цилиндром, на торце которого расположен пьезоприемник, а фаска цилиндра сопряжена через оптическую систему с оптоволокном. Технический результат: исключение необходимости пропускания излучения лазера сквозь приемник ультразвука. 1 з.п. ф-лы, 3 ил.
1. Лазерно-ультразвуковой дефектоскоп, содержащий импульсный лазер, соединенный через оптоволокно с оптико-акустическим преобразователем, а также пьезоприемник, соединенный через усилитель с аналого-цифровым преобразователем, подключенным к компьютеру, отличающийся тем, что оптико-акустический преобразователь выполнен в виде единого блока, расположенного на исследуемом объекте, и содержит пластину оптико-акустического генератора, помещенную между исследуемым объектом и прозрачным цилиндром, на торце которого расположен пьезоприемник, а фаска цилиндра сопряжена через оптическую систему с оптоволокном.
2. Лазерно-ультразвуковой дефектоскоп по п.1, отличающийся тем, что акустические импедансы материалов прозрачного цилиндра и пластины оптико-акустического генератора равны.
СПОСОБ ЛАЗЕРНО-АКУСТИЧЕСКОГО КОНТРОЛЯ ТВЕРДЫХ МАТЕРИАЛОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2002 |
|
RU2232983C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ СОЕДИНЕНИЯ ДЕТАЛЕЙ ИНТЕГРАЛЬНЫХ КОНСТРУКЦИЙ ИЗ ПОЛИМЕРНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ | 2003 |
|
RU2262099C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ ФИЗИКО-МЕХАНИЧЕСКИХ ХАРАКТЕРИСТИК ПОЛИМЕРНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2001 |
|
RU2214590C2 |
US 5457997 A, 17.10.1995 | |||
US 5381695 A, 17.01.1995. |
Авторы
Даты
2010-02-10—Публикация
2008-05-29—Подача