УСТРОЙСТВО СТАБИЛИЗАЦИИ ЛАЗЕРНОЙ СИСТЕМЫ ТЕЛЕОРИЕНТАЦИИ Российский патент 2010 года по МПК H04B10/10 

Описание патента на изобретение RU2381625C1

Изобретение относится к области лазерной техники и используется для формирования информационного поля лазерных систем телеориентации и навигации, оптической связи и может быть использовано при управлении, посадке и стыковке летательных аппаратов, проводке судов через узости или своды мостов, дистанционном управлении робототехническими устройствами в опасных для человека зонах.

Из уровня техники известно устройство («Лазерные опорные системы с самоустанавливанием», В.Г.Иняков и др., ЦНИИ «Электроника», М., 1983 г., стр.16), предназначенное для определения отклонения лазерного излучения. Данное устройство работает следующим образом. Лазер генерирует излучение, которое делится на два канала с помощью призмы Френеля (ВР-0) и призмы (АР-90), приклеенной к первой отражающей грани призмы таким образом, чтобы получился светоделительный куб. Лазерное излучение в канале I после выхода из призмы попадает на позиционно чувствительный фотоприемник, а излучение в канале II, прошедшее через призму, проходит через асферический объектив, светоделительный куб и попадает на позиционно чувствительный фотоприемник, в качестве которого может использоваться четырехквадрантный фотодиод. Асферический объектив служит для того, чтобы длина оптического пути в двух каналах распространения лазерного излучения значительно отличалась. Тогда, зная разницу оптического пути в канале I и II и величину отклонения пучков лазерного излучения на фотоприемниках (Sx и S'x), можно точно определить величину ухода пучка лазерного излучения относительно оптической оси устройства.

К недостаткам данного устройства измерения отклонения пучка лазерного излучения стоит отнести ошибки измерения, вызванные линейным отклонением фотоприемников и угловой нестабильностью всех призм. Данные уходы особенно сказываются при изменении температуры окружающей среды. Также для измерения отклонения двух пучков лазерного излучения необходимо использовать два вышеприведенных устройства.

Наиболее близкой к заявляемому техническому решению является лазерная система телеориентации (патент на изобретение RU №2177208, опубликовано 2001.12.20, МПК: Н04В 10/10), которая и выбрана в качестве прототипа. Данная лазерная система телеориентации включает последовательно установленные: лазер, двухкоординатный акустооптический дефлектор, содержащий две анизотропные акустооптические ячейки, развернутые друг относительно друга на 90°, поляризационную светоделительную призму, создающую два канала распространения лазерного излучения, которая, в свою очередь, состоит из призмы ВР-0 в виде параллелограмма с приклеенными к отклоняющим излучение граням призмами АР-90. Отклоняющие излучение грани призмы обладают поляризационно-избирательными свойствами, которые направляют лазерное излучение по каналу I, если работают два акустооптических дефлектора (разворот плоскости поляризации лазерного излучения на 180°), и по каналу II, если работает один из акустооптических дефлекторов (разворот плоскости поляризации лазерного излучения на 90°). Для управления излучением по двум координатам в канале II используется дополнительный акустооптический дефлектор. Телескоп формирует ближнюю зону телеориентации объекта, так как использование телескопа с уменьшением изображения позволяет увеличить угловую величину поля управления объектом.

При использовании данного изобретения происходит разъюстировка обоих каналов относительно конструктивных осей изделия, в первую очередь за счет изменения температуры окружающей среды, так как изменяется скорость распространения акустической волны в дефлекторах, что приводит к ухудшению точности управления объектом. Данную ошибку можно компенсировать введением поправки частоты акустической волны в зависимости от температуры среды, но в процессе работы происходит разный разогрев дефлекторов, и процесс имеет динамический характер. Поэтому необходимо непрерывно контролировать изменение положения лазерного излучения относительно конструктивных осей изделия и корректировать его соответствующим образом.

Задача, на решение которой направлено изобретение, - создать такую лазерную систему телеориентации, у которой на стабильности пространственного положения пучков лазерного излучения не сказывались бы угловые и линейные уходы оптических элементов, вызванные внешними источниками воздействия (температура и вибрация).

Технический результат изобретения направлен на повышение стабильности работы лазерной системы телеориентации при воздействии внешних факторов (изменение температуры, вибрации).

В предлагаемом устройстве стабилизации лазерной системы телеориентации технический результат достигается тем, что лазерная система телеориентации дополнительно включает измерительный канал.

Устройство стабилизации лазерной системы телеориентации включает последовательно установленные: лазер, двухкоординатный акустооптический дефлектор, содержащий две анизотропные акустооптические ячейки, развернутые друг относительно друга на 90°, а также третью анизотропную акустооптическую ячейку, телескоп и измерительный канал. Измерительный канал содержит поляризационный светоделительный блок с зеркальной торцевой гранью, установленный между двухкоординатным акустооптическим дефлектором и третьей анизотропной акустооптической ячейкой, волновую пластинку (λ/2) и поляризационный оптический разветвитель лазерного излучения, установленные между третьей анизотропной акустооптической ячейкой и телескопом, последовательно установленные по ходу излучения две пары оптических клиньев, одна из которых размещена после поляризационного оптического разветвителя лазерного излучения, а другая - после поляризационного светоделительного блока, а также телескопическую систему и позиционно чувствительное фотоприемное устройство.

Сущность предлагаемого устройства поясняется чертежом, на котором представлена структурная схема устройства стабилизации лазерной системы телеориентации.

Для стабилизации лазерной системы телеориентации, представленной в прототипе, необходимо постоянно контролировать пространственные параметры лазерных пучков относительно конструктивных осей изделия.

Контролировать уходы лазерного излучения в пространстве позволяет введение в лазерную систему телеориентации измерительного канала. Измерительный канал состоит из последовательно установленных: поляризационного светоделительного блока, имеющего зеркальное покрытие на торце, волновой пластинки λ/2, поляризационного оптического разветвителя, двух пар оптических клиньев, телескопической системы, позиционно чувствительного фотоприемника.

Устройство стабилизации лазерной системы телеориентации содержит последовательно установленные: лазер 1, двухкоординатный акустооптический дефлектор, включающий две анизотропные акустооптические ячейки 2 и 3, развернутые друг относительно друга на 90°, последовательно установленные поляризационный светоделительный блок 6 с зеркальной торцевой гранью, размещенный между двухкоординатным акустооптическим дефлектором и третьей анизотропной акустооптической ячейкой 4, волновую пластинку (λ/2) 7 и поляризационный оптический разветвитель 8 лазерного излучения, размещенные между третьей анизотропной акустооптической ячейкой 4 и телескопом 5, а также последовательно установленные по ходу лазерного излучения две пары оптических клиньев 9, одна из которых размещена после поляризационного оптического разветвителя 8 лазерного излучения, а другая - после поляризационного светоделительного блока 6, телескопическую систему 10 и позиционно чувствительный фотоприемник 11. Поляризационный оптический разветвитель 8 представляет собой трапециевидную призму ВР-180 с двумя приклеенными к отражающим граням призмами АР-90. При этом зеркальные покрытия поляризационного светоделительного блока 6 и поляризационного оптического разветвителя 8 имеют разные поляризационные свойства.

Принцип работы устройства стабилизации лазерной системы телеориентации осуществляется следующим образом.

Излучение лазера 1 проходит через включенные акустооптические дефлекторы 2 и 3, поляризационный светоделительный блок 6 и отклоняется им (канал I). Далее излучение проходит через одну из пар оптических клиньев 9, поляризационный оптический разветвитель 8 и выходит наружу. Вторая зеркальная грань поляризационного светоделительного блока 6 изготовлена таким образом, что малая часть лазерного излучения (например - 1%) проходит через нее. Прошедшее через зеркальную грань лазерное излучение отражается от зеркальной поверхности (R=100%), нанесенной на торец поляризационного светоделительного блока 6, отражается от его светоделительной грани, проходит через другую пару оптических клиньев 9, телескопическую систему 10 и попадает на позиционно чувствительный фотоприемник 11. Телескопическая система 10 уменьшает изображение, за счет чего моделируется большее расстояние до фотоприемника 11.

Лазерное излучение при одном включенном акустооптическом дефлекторе 2 проходит через поляризационный светоделительный блок 6 без отклонения (канал II). Лазерное излучение в канале II после акустооптического дефлектора попадает на поляризационный оптический разветвитель 8, представляющий собой трапециевидную призму ВР-180 с приклеенными на ее отражающих зеркальных гранях двумя призмами АР-90 таким образом, чтобы получились оптические делители. При этом от первой грани поляризационного оптического разветвителя 8 необходимо отражать малую часть лазерного излучения по ходу излучения в канале II и максимально отражать лазерное излучение на второй грани поляризационного оптического разветвителя 8. Лазерное излучение в канале I должно проходить через поляризационный оптический разветвитель 8 без потерь, для чего необходимо, чтобы зеркальное светоделительное покрытие поляризационного оптического разветвителя 8 пропускало без потерь лазерное излучение с ориентацией поляризации лазерного излучения в канале I и отражало лазерное излучение с ортогональной поляризацией, как в канале II. В свою очередь, лазерное излучение, отклоненное в канал II, должно проходить через отражающие покрытия поляризационного светоделительного блока 6 без потерь, для чего зеркальные покрытия поляризационного светоделительного блока 6 не должны отражать лазерное излучение, имеющее ориентацию поляризации, как в канале II, и должны отражать противоположную ориентацию (ортогональную) поляризации в канале I. Для того, чтобы поляризация лазерного излучения в канале II была ортогональна к поляризации излучения в канале I, в канале II установлена волновая пластинка (λ/2) 7, которая при определенной ориентации разворачивает поляризацию лазерного излучения на 90°. В данном случае энергетика обоих каналов в измерительном канале будет совпадать. Для взаимного сведения излучения каналов I и II в измерительном канале предусмотрены две пары оптических клиньев 9, вращение которых вокруг своей оси позволяет изменять угловое распространение лазерных пучков. Стабилизация распространения лазерного излучения осуществляется за счет применения монолитных призм, которые разворачивают лазерное излучение на постоянный угол независимо от собственного качания, при этом угловая разъюстировка измерительного канала возможна при развороте призм вокруг вертикальной оси, что практически невозможно при фиксации призм в изделии. В процессе стабилизации лазерной системы телеориентации необходимо учитывать полученную информацию с позиционно чувствительного фотоприемника 11 от каналов I и II и корректировать формирование информационного поля телеориентации объекта соответствующим образом. Так как работа каналов I и II разделена во времени, то для дополнительного разделения каналов во времени нет необходимости. Позиционно чувствительным фотоприемником 11 может служить четырехквадрантный фотодиод либо диафрагма с обычным фотодиодом. Юстировка телескопической системы 10 осуществляется таким образом, чтобы на поверхности четырехквадрантного фотодиода или диафрагмы находилась перетяжка лазерного Гаусового пучка.

Таким образом, в предлагаемом устройстве стабилизации лазерной системы телеориентации за счет введения измерительного канала на стабильности пространственного положения пучков лазерного излучения практически не сказываются угловые и линейные уходы оптических элементов, вызванные внешними источниками воздействия (изменение температуры, вибрации).

Похожие патенты RU2381625C1

название год авторы номер документа
СИСТЕМА ТЕЛЕОРИЕНТАЦИИ ОБЪЕКТА 2011
  • Головков Олег Леонидович
  • Купцова Галина Александровна
RU2475966C1
ЛАЗЕРНАЯ СИСТЕМА ТЕЛЕОРИЕНТАЦИИ ОБЪЕКТА 2016
  • Купцова Галина Александровна
RU2619827C1
ЛАЗЕРНАЯ СИСТЕМА ТЕЛЕОРИЕНТАЦИИ ОБЪЕКТА 2017
  • Купцова Галина Александровна
RU2664666C1
СИСТЕМА УПРАВЛЕНИЯ ЛАЗЕРНЫМ ИЗЛУЧЕНИЕМ (ВАРИАНТЫ) 2010
  • Головков Олег Леонидович
  • Хилов Сергей Иванович
RU2428777C1
ЛАЗЕРНАЯ СИСТЕМА ТЕЛЕОРИЕНТАЦИИ 2000
  • Залевский И.Д.
  • Семенков В.П.
  • Скворцов А.А.
RU2177208C1
ЛАЗЕРНАЯ СИСТЕМА ТЕЛЕОРИЕНТАЦИИ С УВЕЛИЧЕННЫМ ДИАПАЗОНОМ РАБОЧИХ ДАЛЬНОСТЕЙ 1995
  • Семенков В.П.
  • Молчанов В.Я.
  • Тупица В.С.
  • Котляревский А.Н.
RU2093848C1
ЛАЗЕРНАЯ СИСТЕМА ТЕЛЕОРИЕНТАЦИИ С КАНАЛОМ ОПТИЧЕСКОЙ ОБРАТНОЙ СВЯЗИ (ВАРИАНТЫ) 2009
  • Зеленюк Юрий Иосифович
  • Семенков Виктор Прович
  • Костяшкин Леонид Николаевич
  • Стрепетов Сергей Федорович
  • Котляревский Александр Николаевич
  • Бондаренко Дмитрий Анатольевич
  • Головков Олег Леонидович
  • Лаюк Андрей Максимович
RU2410722C1
ТЕРМОКОМПЕНСИРОВАННАЯ ЛАЗЕРНАЯ СИСТЕМА ТЕЛЕОРИЕНТАЦИИ 2003
  • Семенков В.П.
  • Стрепетов С.Ф.
  • Бутаев А.Б.
  • Скворцов А.А.
  • Костяшкин Л.Н.
RU2243626C1
ЛАЗЕРНАЯ СИСТЕМА ТЕЛЕОРИЕНТАЦИИ С ПОВЫШЕННОЙ ПОМЕХОУСТОЙЧИВОСТЬЮ 1996
  • Семенков В.П.
  • Чижевский О.Т.
  • Шипунов А.Г.
  • Погорельский С.Л.
  • Молчанов В.Я.
RU2110808C1
СПОСОБ ЛАЗЕРНОГО СПЕКАНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2014
  • Головков Олег Леонидович
  • Хилов Сергей Иванович
RU2569279C2

Реферат патента 2010 года УСТРОЙСТВО СТАБИЛИЗАЦИИ ЛАЗЕРНОЙ СИСТЕМЫ ТЕЛЕОРИЕНТАЦИИ

Изобретение относится к области лазерной техники и используется для формирования информационного поля лазерных систем телеориентации и навигации, оптической связи. Технический результат заключается в повышении стабильности работы лазерной системы телеориентации при воздействии внешних факторов (изменение температуры, вибрации). Для чего устройство стабилизации лазерной системы телеориентации содержит: лазер, двухкоординатный акустооптический дефлектор, включающий две анизотропные акустооптические ячейки, поляризационный светоделительный блок с зеркальной торцевой гранью, размещенный между двухкоординатным акустооптическим дефлектором и третьей анизотропной акустооптической ячейкой, волновую пластинку (λ/2) и поляризационный оптический разветвитель лазерного излучения, размещенные между третьей анизотропной акустооптической ячейкой и телескопом, а также две пары оптических клиньев, одна из которых размещена после поляризационного оптического разветвителя лазерного излучения, а другая - после поляризационного светоделительного блока, телескопическую систему и позиционно чувствительное фотоприемное устройство. 1 ил.

Формула изобретения RU 2 381 625 C1

Устройство стабилизации лазерной системы телеориентации, содержащее последовательно установленные лазер, включающий две анизотропные акустооптические ячейки, развернутые относительно друг друга на 90°, а также третью анизотропную акустооптическую ячейку и телескоп, отличающееся тем, что дополнительно содержит измерительный канал, включающий поляризационный светоделительный блок с зеркальной торцевой гранью, установленный между двухкоординатным акустооптическим дефлектором и третьей анизотропной акустооптической ячейкой, а также волновую пластинку (λ/2) и поляризационный оптический разветвитель лазерного излучения, установленные между анизотропной акустооптической ячейкой и телескопом, а также последовательно установленные по ходу лазерного излучения две пары оптических клиньев, одна из которых размещена после поляризационного оптического разветвителя лазерного излучения, а другая - после поляризационного светоделительного блока, а также телескопическую систему и позиционно-чувствительное фотоприемное устройство, при этом зеркальные покрытия поляризационного светоделительного блока и поляризационного оптического разветвителя имеют разные поляризационные свойства.

Документы, цитированные в отчете о поиске Патент 2010 года RU2381625C1

ЛАЗЕРНАЯ СИСТЕМА ТЕЛЕОРИЕНТАЦИИ 2000
  • Залевский И.Д.
  • Семенков В.П.
  • Скворцов А.А.
RU2177208C1
ЛАЗЕРНАЯ СИСТЕМА ТЕЛЕОРИЕНТАЦИИ 2003
  • Семенков Виктор Прович
  • Бондаренко Дмитрий Анатольевич
  • Бутаев Андрей Борисович
  • Костяшкин Леонид Николаевич
  • Стрепетов Сергей Федорович
RU2267734C2
ТЕРМОКОМПЕНСИРОВАННАЯ ЛАЗЕРНАЯ СИСТЕМА ТЕЛЕОРИЕНТАЦИИ 2003
  • Семенков В.П.
  • Стрепетов С.Ф.
  • Бутаев А.Б.
  • Скворцов А.А.
  • Костяшкин Л.Н.
RU2243626C1
ЛАЗЕРНАЯ СИСТЕМА ТЕЛЕОРИЕНТАЦИИ С УВЕЛИЧЕННЫМ ДИАПАЗОНОМ РАБОЧИХ ДАЛЬНОСТЕЙ 1995
  • Семенков В.П.
  • Молчанов В.Я.
  • Тупица В.С.
  • Котляревский А.Н.
RU2093848C1
ПРЕОБРАЗОВАТЕЛЬ НАПРЯЖЕНИЯ ПЕРЕМЕННОГО ТОКА 0
SU243284A1
DE 3719136 A1, 12.03.1998.

RU 2 381 625 C1

Авторы

Головков Олег Леонидович

Даты

2010-02-10Публикация

2008-12-01Подача