ОБЛАСТЬ ТЕХНИКИ
Группа изобретений относится к области нанесения покрытий из золота и его сплавов с другими металлами на металлические детали способами без приложения электрического тока из композиций, не содержащих цианидов и других ядовитых реагентов, и может быть использована в микроэлектронике и электрорадиотехнике.
УРОВЕНЬ ТЕХНИКИ
Группа изобретений относится к нанесению покрытия из золота и его сплавов с другими металлами на детали из никеля и его сплавов, меди и медных сплавов, нержавеющих сталей методами без приложения электрического тока из композиций, не содержащих цианидов и других ядовитых реагентов.
Золотое покрытие находит применение в микроэлектронике и электрорадиотехнике для защиты контактных площадок и рабочих поверхностей приборов от окисления и коррозии, придания им способности к пайке, приварке алюминиевых или золотых контактных проволочек, а также для придания изделиям необходимых электрофизических характеристик.
В ряде технических задач требуется использование сплавов золота с легирующими добавками других металлов, а именно серебра, палладия, кобальта, никеля, олова, придающих сплаву повышенные твердость и износостойкость, пониженную температуру плавления и другие технологические свойства.
Аналогами одного из предлагаемых изобретений являются способы золочения металлических деталей в растворе без приложения электрического тока, т.е. бестоковые методы, применяемые в тех случаях, когда подведение электрического тока к покрываемым деталям технически невозможно или затруднено, например в современных печатных платах с высокой плотностью элементов, либо в случаях, когда электрическое поле вовсе отсутствует: внутренние полости, каналы, отверстия в изделиях сложной формы. Уровень техники в этой области характеризуется нанесением золотого покрытия на металлические детали из растворов золочения с помощью иммерсионных и химических методов. Иммерсионное золотое покрытие - «immersion gold» - получается в результате реакции замещения, в ходе которой поверхностные слои металлической детали растворяются с одновременным восстановлением на поверхности комплексных ионов золота из раствора и осаждением золотой пленки.
Золотое покрытие, получаемое химическим способом - «electroless gold». В химическом способе, называемом обычно «electroless» - бестоковый или «autocatalytic» - автокаталитический, раствор золочения обязательно содержит химический агент-восстановитель - reducing agent, а реакция восстановления золота из комплексных ионов и формирование золотого покрытия происходят на поверхности детали, обладающей каталитическими свойствами. В большинстве случаев золотое покрытие наносят на подслой химического никеля толщиной 4-5 мкм и содержанием фосфора 8-10%, этот подслой служит защитой медной детали от коррозии и барьерным слоем, препятствующим взаимной диффузии меди и золота.
Способ золочения должен обеспечивать надежное нанесение золотого покрытия на подслой химического никеля.
Известны бестоковые способы золочения металлических деталей в водных растворах, содержащих цианистое соединение золота - дицианаурат, либо соединение золота в присутствии цианидов щелочных металлов. Цианистые электролиты широко распространены в практике до сих пор и трудно поддаются замене. Этот факт объясняется тем, что в водных растворах цианистое комплексное соединение золота обладает и необходимой для технологии стабильностью, и необходимой химической активностью в реакциях замещения и восстановления.
Известен процесс бестокового осаждения пленки золота из водного раствора, содержащего цианистое соединение золота в количестве 0,5-10 г/л в расчете на металл, щавелевую кислоту или ее соль в количестве 5-50 г/л, а также дополнительно этилендиаминтетрауксусную кислоту или ее соль для растворения металла основы [1].
Известны также работы по нанесению золотого покрытия из водных цианистых растворов бестоковыми химическими способами - бестоковое нанесение золотого покрытия на подслой химического никеля из ванны, содержащей дицианаурат и гипофосфит натрия в качестве агента-восстановителя [2].
Недостатком вышеуказанных аналогов является использование в растворе золочения ядовитых цианистых соединений.
Известны бестоковые способы золочения на основе водных растворов с использованием вместо цианидов иных, значительно менее токсичных комплексообразующих соединений.
Известен бестоковый иммерсионный способ и слаботоксичный водный раствор золочения, не содержащий цианидов, на основе водорастворимого нецианистого соединения золота и соли пиросернистой кислоты с катионом аммония, щелочного или щелочно-земельного металлов. Раствор может дополнительно содержать соединение сернистой кислоты и соединение аминокарбоновой кислоты [3]. Существенным признаком указанного способа является повышение экологической безопасности бестокового метода золочения за счет введения в раствор золочения других комплексообразующих соединений взамен ядовитых цианидов.
Недостатком данного способа является недостаточная толщина - менее 0,15 мкм - покрытия, не обеспечивающая достижение необходимых электрофизических свойств изделий с покрытием.
Кроме того, указанный способ по своей химической сущности не обеспечивает возможность получения покрытия из сплавов золота с другими металлами, это связано с константами нестойкости металлокомплексов, их растворимостью, а также с тем, что использованные комплексообразователи не позволяют в достаточной для совместного осаждения мере сблизить потенциалы восстановления комплексов.
Известен способ нанесения покрытия из благородных металлов на металлические детали, по которому подготовленные детали обрабатывают при температуре 20-150°С металлирующим раствором нецианистой соли благородного металла, например, нитрата, галогенида, сульфата, ацетата в органическом растворителе из группы диглим, триглим, тетраглим, триалкилфосфаты, например, триметилфосфат, трибутилфосфат, серусодержащие растворители, например, сульфолан, диметилсульфоксид, а также уксусная кислота, этиленгликоль, пропиленкарбонат [4].
Известен также способ нанесения покрытия из благородных металлов, а также никеля, меди, ртути, индия, висмута и сурьмы на металлические детали, по которому подготовленные детали обрабатывают при температуре 20-150°С металлирующим раствором нецианистой соли благородного металла, например, нитрата, галогенида, сульфата, ацетата в органическом растворителе из группы триалкилфосфатов, например, триметил-трибутилфосфат, или серусодержащих растворителей, например, сульфолан, диметилсульфоксид, и/или уксусную кислоту, и/или этиленгликоль, и/или пропиленкарбонат [5].
Известен также раствор и способ бестокового нанесения покрытия, в котором металлирующий раствор готовят растворением галогенида, нитрата, ацетата или цитрата металла в алкилсульфоксиде с числом атомов углерода в алкиле от 1 до 3, или в тетраметиленсульфоксиде [6].
Вышеприведенные способы [4], [5], [6] имеют общие существенные признаки, а именно способ нанесения покрытий заключается в том, что в качестве металлирующего раствора для покрываемых изделий берут раствор нецианистых солей металлов, например, галогенидов, нитратов, сульфатов или карбоксилатов в химически совместимом с солями металлов и технологически безопасном органическом растворителе. Именно эти существенные признаки обеспечивают принципиальное решение задачи создания экологически безопасного бестокового метода нанесения покрытия из золота, а также и его сплавов на металлические подложки и положительный эффект способа в виде адгезионно-прочных пленок покрытия.
Экологическая безопасность в вышеприведенных способах достигается тем, что в металлирующем растворе используют нетоксичные или слаботоксичные соединения золота взамен ядовитых цианидов, а роль комплексообразующего соединения вместо цианидов выполняет нетоксичный апротонно-диполярный органический растворитель, обладающий высокими значениями донорного числа и диэлектрической проницаемости, способный образовывать прочные комплексы как с благородными металлами, так и с металлами подложки.
Использованием указанных органических растворителей в силу их универсальной комплексообразующей способности достигается получение покрытия из сплавов золота с другими металлами. Проведение процесса в неводной среде апротонного органического растворителя позволило исключить побочные реакции с водой, сопровождающиеся газовыделением и образованием оксидной пленки, и получить плотные пленки покрытия с высокими значениями адгезионной прочности.
Из всех вышеприведенных аналогов наиболее близким к заявляемому способу является способ [6] создания экологически безопасного бестокового метода нанесения покрытия из золота и его сплавов. Однако способ [6] не позволяет достичь конкретный технический результат, а именно нанести с помощью экологически безопасного бестокового метода на подслой химникеля с содержанием 8-10% фосфора однородное и адгезионнопрочное золотое покрытие с толщиной, обеспечивающей требуемые техническими условиями значения электрофизических характеристик измерительного эталонного устройства - аттенюатора, при использовании способа [6] возможно получение покрытия с плохой адгезией и недостаточной толщиной.
В способе [6] активирование детали перед нанесением покрытия осуществляют в водных растворах соляной и серной кислот с последующей водной промывкой и сушкой. К недостаткам способа, относящиеся к операции активирования деталей с подслоем химникеля можно отнести:
- необходимость дополнительной операции сушки деталей перед покрытием, что усложняет техпроцесс и увеличивает процент брака;
- увеличение процента брака при активировании деталей со «старым» никелем, т.е. деталей с подслоем химникеля, пролежавших на воздухе одни сутки и более.
Техническим результатом, на достижение которого направлена предлагаемая группа изобретений, является создание надежного и эргономичного способа нанесения покрытия из золота и его сплавов на металлические детали с возможностью активирования поверхности детали, в том числе с подслоем химникеля, перед золочением с введением в состав композиций для осуществления способа компонентов, ускоряющих процесс роста золотого покрытия с возможной интенсификацией процесса, экологически безопасного бестокового способа, обеспечивающего получение покрытия из сплавов золота с другими металлами и позволяющего наносить на детали сложной формы, в том числе с подслоем химникеля, золотое покрытие с толщиной до 1,5 мкм.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
Для достижения указанного технического результата предложены:
Композиция для активирования металлических деталей перед нанесением на них покрытия из золота и его сплавов, включающая золотохлористоводородную кислоту, хлорид серебра, хлорид кобальта, хлорид аммония в органическом растворителе диметилсульфоксиде, содержащем пропиленкарбонат, при следующем соотношении ингредиентов, мас.%:
Композиция для нанесения покрытия из золота и его сплавов на металлические детали, включающая галогенид золота или золотохлористоводородную кислоту, хлорид аммония, борную кислоту, нитрит натрия и/или хлорид кобальта, и/или хлорид металла, образующего сплав с золотом, в органическом растворителе диметилсульфоксиде, содержащем пропиленкарбонат, при следующем соотношении ингредиентов, мас.%:
Способ нанесения покрытия из золота и его сплавов на металлические детали, включающий обезжиривание, химическое травление, активирование, промывку и обработку подготовленных деталей металлирующим раствором. Активирование металлических деталей, в том числе с подслоем химического никеля, перед золочением осуществляют обработкой в металлирующем растворе, в качестве которого используют композицию для активирования металлических деталей перед нанесением на них покрытия из золота и его сплавов, включающую, мас.%: золотохлористоводородную кислоту 0,1-0,3, хлорид серебра 0,05-0,2, хлорид кобальта 0,1-0,3, хлорид аммония 0,1-0,5, пропиленкарбонат 5-22, диметилсульфоксид - остальное, при температуре 70-90°С в течение 30-90 секунд, а нанесение покрытия осуществляют обработкой подготовленных деталей композицией, содержащей, мас.%: галогенид золота или золотохлористоводородную кислота в расчете на металл 0,1-0,5, хлорид аммония 0,2-1,0, борная кислота 0,1-1,5, нитрит натрия 0,1-0,5, и/или хлорид кобальта 0,1-1,0, и/или хлорид металла, образующего сплав с золотом 0,1-2,0, пропиленкарбонат 5-22, диметилсульфоксид - остальное. При этом детали в процессе активирования и нанесения покрытия встряхивают с частотой 60-90 колебаний в минуту.
Предлагаемый способ нанесения покрытий из золота и его сплавов на металлические детали, включающий обезжиривание, химическое травление, активирование, промывку и обработку подготовленных деталей металлирующим раствором отличается от известных тем, что активирование металлических деталей с подслоем химического никеля перед золочением осуществляют обработкой при температуре 70-90°С в течение 30-90 секунд в металлирующем растворе, в качестве которого используют композицию для активирования металлических деталей перед нанесением на них покрытия из золота и его сплавов, включающую золотохлористоводородную кислоту, хлорид серебра, хлорид кобальта, хлорид аммония в органическом растворителе диметилсульфоксиде, содержащем пропиленкарбонат, металлические детали в процессе активирования и нанесения покрытия встряхивают с частотой 60-90 колебаний в минуту, золочение проводят, используя композицию для нанесения покрытий из золота и его сплавов на металлические детали, включающую золото в виде галогенида или золотохлористоводородной кислоты, хлорид аммония, борную кислоту, нитрит натрия, и/или хлорид кобальта, и/или хлорид металла, образующего сплав с золотом, в органическом растворителе диметилсульфоксиде, содержащем пропиленкарбонат.
Одно из существенных отличий и преимуществ предложенного способа состоит в том, что композиция для активирования металлических деталей перед нанесением на них покрытия из золота и его сплавов - раствор активирования - составлен на основе того же органического растворителя, что и композиция для нанесения покрытий из золота и его сплавов на металлические детали - раствор золочения, поэтому перед золочением не требуется дополнительная операция сушки деталей и упрощается технологический процесс.
Предложенные - композиция для активирования металлических деталей перед нанесением на них покрытия из золота и его сплавов - раствор активирования и режим активирования обеспечивают надежное активирование химникеля, в том числе и «старого», и получение сплошного и адгезионнопрочного покрытия в ходе последующей операции бестокового нанесения покрытия при обработке металлических деталей в композиции для нанесения покрытий из золота и его сплавов на металлические детали - растворе золочения.
Другое существенное отличие предлагаемого способа состоит в том, что в состав композиции для нанесения покрытий из золота и его сплавов на металлические детали - раствор золочения - включены такие ингредиенты, как борная кислота, нитрит натрия и/или хлорида кобальта, а также хлорид металла, образующего сплав с золотом, в органическом растворителе диметилсульфоксиде, содержащем пропиленкарбонат. Борная кислота и/или хлорид кобальта ускоряют процесс бестокового осаждения покрытия на подслой химникеля, а нитрит натрия усиливает их действие. Введение борной кислоты и/или хлорида кобальта вместе с нитритом натрия увеличивает толщину покрытия на 35-65%. Введение малотоксичного пропиленкарбоната на 5-15% увеличивает толщину покрытия и улучшает технологические свойства раствора: снижает температуру замерзания растворителя и раствора, препятствуя его замерзанию в производственных помещениях зимой, и повышает температуру вспышки раствора.
Процедура встряхивания металлических деталей в процессе активирования и нанесения покрытия, проводимая с частотой 60-90 колебаний в минуту, обеспечивает равномерность покрытия и увеличивает его толщину на 10-25% за счет отвода продуктов реакции с поверхности и интенсификации процесса, при этом удается избежать растравливания дефектов поверхности, что имеет место при использовании ультразвуковой ванны.
Предлагаемые способ и композиции для его осуществления позволяют решить техническую задачу также в части экологически безопасного бестокового золочения металлических деталей с достижением заданного технического результата.
Примеры
Для нанесения покрытий из золота и его сплавов на металлические детали проводят обезжиривание, химическое травление, активирование, промывку и обработку подготовленных деталей металлирующим раствором, однако если нет необходимости, химическое травление металлических деталей можно не проводить.
Детали активировали в течение 30-90 сек в предлагаемой в настоящем изобретении композиции для активирования при температуре 70-90°С и встряхивании с частотой 60-90 движений в мин, затем промывали в пропиленкарбонате или смешанном растворителе пропиленкарбонат-диметилсульфоксид и переносили в ванну для золочения.
Процесс золочения проводили при 50-90°С в течение 0,5-15 мин, встряхивая металлическую деталь, погруженную в раствор золочения, с частотой 60-90 колебательных движений в минуту. Далее металлические детали с покрытием промывали в пропиленкарбонате или смешанном растворителе пропиленкарбонат-диметилсульфоксид, затем в воде и сушили.
Определение элементного состава покрытия проводили методом рентгеноспектрального анализа с применением растрового электронного микроскопа CAMSCAN MV 2300. Толщину покрытия определяли по величине привеса образца с известной величиной поверхности после нанесения на него покрытия, а также из данных рентгеноспектрального анализа, используя калибровочные кривые. Сплошность поверхности покрытия определяли осмотром в оптическом микроскопе. Адгезионную прочность покрытия проверяли с помощью теста на отрыв скотч-ленты, этот способ контроля повсеместно используется практиками для характеристики адгезии покрытия. Конкретные примеры нанесения покрытий из золота и его сплавов предлагаемым способом приведены в таблице, где ЗХВК - золотохлористоводородная кислота, ХЗ - хлорид золота, ДМСО - диметилсульфоксид, ПК - пропиленкарбонат.
Примеры, когда полученное предлагаемым способом покрытие выдерживает тест и не отрывается скотч-лентой от основы, обозначены в таблице знаком «+». Количество золотохлористоводородной кислоты и хлорида золота приведено в расчете на металл.
Используют безводный хлорид кобальта, а также безводные хлориды металлов, образующих сплавы с золотом: хлориды никеля и палладия.
В примерах осуществления №1-8 таблицы в соответствии с предлагаемыми изобретениями золотое покрытие наносили на подслой химникеля толщиной 4-5 мкм с содержанием фосфора 8-10%.
В примере №6 таблицы покрытие наносили на «старый» химникель, который находился в производственном помещении 1 год.
В примерах №7 и 8 таблицы получено покрытие из сплава золото-олово и трехкомпонентного сплава золото-палладий-никель.
В примере №9 таблицы покрытие наносили непосредственно на медную основу.
Приведенные примеры подтверждают осуществление надежного и эргономичного способа нанесения покрытия из золота и его сплавов на металлические детали с возможностью активирования подслоя химникеля перед золочением с введением в состав композиций для осуществления способа компонентов, ускоряющих процесс роста золотого покрытия с возможной интенсификацией процесса, экологически безопасного бестокового способа, обеспечивающего получение покрытия из сплавов золота с другими металлами и позволяющего наносить на детали сложной формы по подслою химникеля золотое покрытие с толщиной до 1,5 мкм.
В том числе предлагаемая группа изобретения позволяет наносить экологически безопасным бестоковым покрытие из золота и его сплавов на подслой химического никеля, в том числе и «старого», а также непосредственно на медную подложку. Полученное предлагаемой группой изобретений покрытие является сплошным, адгезионнопрочным и решает техническую задачу по достижению необходимой толщины покрытия.
ПРОМЫШЛЕННАЯ ПРИМЕНИМОСТЬ
Группа изобретений относится к области нанесения покрытий из золота и его сплавов с другими металлами на металлические детали способами без приложения электрического тока из композиций, не содержащих цианидов и других ядовитых реагентов, и может быть использована в микроэлектронике и электрорадиотехнике. Предлагаемый способ нанесения покрытия из золота и его сплавов на металлические детали надежен и эргономичен в применении, несложен в эксплуатации. Способ прошел испытания в лаборатории и в производственных условиях. Предлагаемым способом были нанесены покрытия из золота или сплавов золота на отдельные образцы массовой продукции микроэлектроники и электрорадиотехники, в том числе печатных плат и электроконтактов, а также деталей аттенюатора. Проведенные испытания изделий с покрытием удовлетворяют техническим требованиям. В производственных условиях изготовлена опытная партия изделий с золотым покрытием. Способ рекомендован для нанесения покрытий из золота и его сплавов на металлические детали в условиях производства. Технико-экономический расчет показывает, что при замене существующей технологии цианистого золочения на предлагаемую технологию реальное снижение себестоимости золотого покрытия в зависимости от конкретного вида продукции и технологического оформления процесса может достигать 50%. Таким образом, внедрение разрабатываемой технологии в производство позволит удешевить себестоимость продукции с золотым покрытием за счет упрощения процесса и повышения производительности, а также за счет удаления из производства веществ повышенной опасности - ядовитых цианидов.
ИСТОЧНИКИ ИНФОРМАЦИИ
1. Патент JP 2007023382; Публ. 2007.02.01. МПК8 С23С 18/42, С23С 18/31.
2. Т.N.Vorobyova, S.K.Poznyak, A.A.Rimskaya and О.N.Vrublevskaya. Electroless gold plating from a hypophosphite-dicyanoaurate bath. Surface and Coatings Technology, Vol.176, No.3, 2004, pp.327-336.
3. Патент EP 1645658; Публ. 2006.04.12. МПК8 C23C 18/31, C23C 18/42.
4. Заявка РФ №5032094/02, пр. 13.04.92, кл. С23С 18/42, B22F 7/00.
5. Патент РФ №2112077 от 11.04.96, МПК 6 С23С 18/31, 18/32, 18/38, 18/42.
6. Патент JP 2007217751; Публ. 2007.08.30. МПК8 С23С 18/31, С23С 18/31.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЯ ИЗ ПАЛЛАДИЯ И ЕГО СПЛАВОВ НА МЕТАЛЛИЧЕСКИЕ ДЕТАЛИ | 2005 |
|
RU2293138C2 |
СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЯ ИЗ БЛАГОРОДНЫХ МЕТАЛЛОВ, А ТАКЖЕ НИКЕЛЯ, МЕДИ, РТУТИ, ИНДИЯ, ВИСМУТА И СУРЬМЫ НА МЕТАЛЛИЧЕСКИЕ ДЕТАЛИ | 1996 |
|
RU2112077C1 |
Способ предварительной обработки мелкоразмерных деталей из сплавов на основе меди с внутренними отверстиями и пазами для электроосаждения на них покрытий | 2020 |
|
RU2750731C1 |
Способ изготовления бюгельных зубных протезов | 1978 |
|
SU701637A1 |
СПОСОБ ПЕРЕРАБОТКИ СПЛАВА ЛИГАТУРНОГО ЗОЛОТА | 2012 |
|
RU2516180C1 |
Способ золочения металлических изделий | 1990 |
|
SU1724440A1 |
Композиционное металл-алмазное покрытие, способ его получения, дисперсная система для осаждения композиционного металл-алмазного покрытия и способ ее получения | 2019 |
|
RU2706931C1 |
СПОСОБ ОБРАБОТКИ ЗУБНЫХ ПРОТЕЗОВ | 1993 |
|
RU2036622C1 |
Раствор для химического золочения | 2023 |
|
RU2814757C1 |
СПОСОБ НАНЕСЕНИЯ ГАЛЬВАНИЧЕСКОГО ПОКРЫТИЯ НА СЪЕМНЫЕ ЗУБНЫЕ ПРОТЕЗЫ | 2011 |
|
RU2469697C1 |
Группа изобретений относится к области нанесения покрытий из золота и его сплавов на металлические детали без приложения электрического тока с использованием композиций, не содержащих цианидов и других ядовитых реагентов. Способ включает обезжиривание, химическое травление, активирование, промывку и обработку подготовленных деталей композицией для нанесения покрытия. Активирование деталей осуществляют обработкой композицией, содержащей, мас.%: золотохлористоводородная кислота 0,1-0,3, хлорид серебра 0,05-0,2, хлорид кобальта 0,1-0,3, хлорид аммония 0,1-0,5, пропиленкарбонат 5-22, диметилсульфоксид - остальное, при температуре 70-90°С в течение 30-90 секунд, а нанесение покрытия осуществляют обработкой подготовленных деталей композицией, содержащей, мас.%: галогенид золота или золотохлористоводородная кислота в расчете на металл 0,1-0,5, хлорид аммония 0,2-1,0, борная кислота 0,1-1,5, нитрит натрия 0,1-0,5, и/или хлорид кобальта 0,1-1,0, и/или хлорид металла, образующего сплав с золотом, 0,1-2,0, пропиленкарбонат 5-22, диметилсульфоксид - остальное. При этом детали в процессе активирования и нанесения покрытия встряхивают с частотой 60-90 колебаний в минуту. Группа изобретений позволяет создать надежный и эргономичный способ нанесения покрытия из золота и его сплавов на металлические детали с возможностью активирования поверхности детали, в том числе с подслоем химникеля, композицией, ускоряющей процесс роста золотого покрытия с возможной интенсификацией процесса при экологически безопасном бестоковом золочении деталей сложной формы, в том числе имеющих подслой химникеля, с получением покрытия толщиной до 1,5 мкм. 3 н.п. ф-лы, 1 табл.
1. Композиция для активирования металлических деталей перед нанесением покрытия из золота и его сплавов, включающая золотохлористоводородную кислоту, хлорид серебра, хлорид кобальта, хлорид аммония, пропиленкарбонат в органическом растворителе диметилсульфоксиде при следующем соотношении ингредиентов, мас.%:
2. Композиция для нанесения покрытия из золота и его сплавов на металлические детали, включающая галогенид золота или золотохлористоводородную кислоту, хлорид аммония, борную кислоту, нитрит натрия и/или хлорид кобальта, и/или хлорид металла, образующего сплав с золотом, пропиленкарбонат в органическом растворителе диметилсульфоксиде при следующем соотношении ингредиентов, мас.%:
3. Способ нанесения покрытия из золота и его сплавов на металлические детали, включающий обезжиривание, химическое травление, активирование, промывку и обработку подготовленных деталей композицией для нанесения покрытия, отличающийся тем, что активирование металлических деталей осуществляют обработкой в растворе, в качестве которого используют композицию для активирования металлических деталей по п.1, при температуре 70-90°С в течение 30-90 с, а нанесение покрытия осуществляют обработкой подготовленных деталей композицией для нанесения покрытия из золота и его сплавов на металлические детали по п.2, при этом металлические детали в процессе активирования и нанесения покрытия встряхивают с частотой 60-90 колебаний в минуту.
СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЯ ИЗ БЛАГОРОДНЫХ МЕТАЛЛОВ, А ТАКЖЕ НИКЕЛЯ, МЕДИ, РТУТИ, ИНДИЯ, ВИСМУТА И СУРЬМЫ НА МЕТАЛЛИЧЕСКИЕ ДЕТАЛИ | 1996 |
|
RU2112077C1 |
СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЯ ИЗ ПАЛЛАДИЯ И ЕГО СПЛАВОВ НА МЕТАЛЛИЧЕСКИЕ ДЕТАЛИ | 2005 |
|
RU2293138C2 |
JP 2007023382 А, 01.02.2007 | |||
Электрогидравлическая система | 1987 |
|
SU1645658A1 |
JP 2007217751 А, 30.08.2007. |
Авторы
Даты
2010-02-27—Публикация
2008-07-22—Подача