СПОСОБ ОЧИСТКИ РЕКОМБИНАНТНОГО ИНТЕРФЕРОНА β-1b Российский патент 2010 года по МПК C07K14/565 C07K1/18 C07K1/36 A61K38/21 

Описание патента на изобретение RU2392282C1

Изобретение относится к биотехнологии, а именно к технологии получения рекомбинантного интерферона бета-1b человека, в частности к способу его очистки.

Интерфероны (ИФН) - гетерогенные гликопротеины иммунной системы, обладающие противовирусными, противоопухолевыми и иммуномодулирующими эффектами и различающиеся между собой как источником клеточной продукции, так и проявлениями функциональной активности. ИФН бета с самых первых шагов внедрения его рекомбинантных препаратов был предназначен, главным образом, для противоопухолевой терапии [С. Angelucci et al. Recombinant human IFN-beta affects androgen receptor level, neuroendocrine differentiation, cell adhesion, and motility in prostate cancer cells. J. Interferon Cytokine Res., 2007, 27(8): 643-52; S. Kohashi et al. Interferon-beta inhibits liver metastases from murine colon 26 carcinoma and its highly metastatic variant. Surg. Today, 2007, 37(6): 474-481]. Помимо этого, препараты ИФН бета востребованы для лечения вирусных инфекций, в частности гепатита С, везикулярного стоматита и других [I.M. Pedersen et al. Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature, 2007, 449 (7164): 919-22; J. Feher, G. Lengyel. Interferon in the treatment of viral hepatitis. The interferon was discovered 50 years ago. Orv. Hetil., 2007, 148(33): 1539-43; M.D. Trottier, D.S. Lyles, C.S. Reiss. Peripheral, but not central nervous system, type I interferon expression in mice in response to intranasal vesicular stomatitis virus infection. J. Neurovirol., 2007, 13(5): 433-445]. В последние годы основным направлением применения рИФН бета-1b стали неврологические заболевания, в первую очередь рассеянный склероз и другие демиелинизирующие заболевания нервной системы, болезнь Бехтерева [М. Kremenchutzky, S. Morrow, С. Rush. The safety and efficacy of IFN-beta products for the treatment of multiple sclerosis. Expert Opin. Drug Saf., 2007, 6(3): 279-88; S. Pay et al. Dendritic cell subsets and type I interferon system in Behçet's disease: does functional abnormality in plasmacytoid dendritic cells contribute to Th1 polarization? Clin. Exp. Rheumatol., 2007, 25 (4 Suppl 45): S34-40]. Отмечена клиническая эффективность рИФН бета-1b при терапии стероидоустойчивого язвенного колита, гломерулонефрита, хронического панкреатита [S.C. Satchell et al. Interferon-beta Reduces Proteinuria in Experimental Glomerulonephritis. J. Am. Soc. Nephrol., 2007, 18(11): 2875-84; R. Talukdar, R.K. Tandon. Pancreatic stellate cells: New target in the treatment of chronic pancreatitis. J. Gastroenterol. Hepatol., 2007].

Среди препаратов ИФН бета наибольшее признание на мировом фармацевтическом рынке заслужили рекомбинантный ИФН бета-1b, или Бетаферон (Schering AG, Germany), и в меньшей степени ИФН бета-1а, в частности Авонекс (Gedeon Richter, Hungary). Помимо особенностей фармакологического действия каждого из этих препаратов, имеющих свою фармакодинамику и свои показания для назначения пациентам, следует отметить, что у препарата ИФН бета-1b есть определенные преимущества, которые определили на него больший спрос. При оценке этих преимуществ исследователи отмечают, в частности, его неспособность, в отличие от ИФН бета-1а, к индукции нейтрализующих антител [Р. Barbero et al. Every-other-day interferon beta-1b versus once-weekly interferon beta-1a for multiple sclerosis (INCOMIN Trial) II: analysis of MRI responses to treatment and correlation with Nab. Mult. Scler., 2006, 12(1): 72-76], меньшую выраженность болевых ощущений и местной реакции на инъекционное введение ИФН бета-1b [К. Baum et al. Comparison of injection site pain and injection site reactions in relapsing-remitting multiple sclerosis patients treated with interferon beta-1a or 1b. Mult. Scler., 2007, 13(9): 1153-1160], а также различия в технологии получения этих препаратов: рекомбинантный ИФН бета-1а получают на клетках яичника китайских хомячков, то есть в эукариотической системе, а рекомбинантный ИФН бета-1b можно получать и в прокариотической системе с использованием штамма-продуцента E.coli [F.P. McCormick et al. Human interferon-.beta. (IFN-.beta.) produced in Chinese hamster ovary (CHO) cells. United States Patent 5,795,779 August 18, 1998; A. Whitty et al. Interferon-beta fusion proteins and uses. United States Patent 6,800,735, October 5, 2004].

Технологии получения и очистки рИФНβ-1b посвящено много патентных исследований, в их числе: US Patent 5,795,779, August 18, 1998 (McCormick et al. Human interferon-.beta. (IFN-.beta.) produced in Chinese hamster ovary (CHO) cells); US Patent 6,323,006, November 27, 2001 (Peregrino Ferreira et al. Recombinant human beta-CIS interferon); US Patent 4,894,330, January 16, 1990 (Hershenson et al. Purification of recombinant beta-interferon incorporating RP-HPLC); US Patent 5,004,605, April 2, 1991 (Hershenson et al. Low pH pharmaceutical compositions of recombinant .beta.-interferon); US Patent 6,923,956, August 2, 2005 (Tschope et al. Liquid interferon-.beta. formulations); RU 2006 123 539 А (Парк Дзи-Соок и др. Способ очистки интерферона бета).

Известен способ получения рекомбинантного интерферона бета-1b (рИФН бета-1b) человека в нерастворимой форме - в виде тел включения (пат. РФ № 2261913, МПК C12N 15/22, опубл. 2005)

По сравнению с растворимой формой экспрессия белка в виде тел включения имеет ряд преимуществ - нерастворимые агрегаты белка не проявляют токсического действия, практически не атакуются протеазами, с высоким выходом выделяются центрифугированием. В то же время существуют проблемы низкого выхода активного корректно сложенного белка после проведения рефолдинга в процессе очистки рИФН бета-1b, что определяется пространственной структурой последнего [М. Karpusas et al. The crystal structure of human interferon b at 2.2-Å resolution. // Proc. Natl. Acad. Sci. USA. - 1997. Vol.94. P.1 1813-11818].

Известен способ очистки рИФН бета-1b и использованием детергента додецилсульфат натрия при его получении в нерастворимой форме (Патент США 4,530,787, 1985).

Однако при относительно низкой токсичности этого препарата использование додецилсульфата натрия в технологическом процессе сопряжено с целым рядом препятствий: это соединение вызывает значительную денатурацию целевого белка, его не удается удалить из раствора, что в свою очередь делает невозможной последующую ионообменную хроматографию, необходимую для дальнейшего процесса очистки рИФН бета-1b.

Известен способ очистки рИФН бета-1b, позволяющий избежать указанных недостатков применением в качестве детергента цвиттергента 3-14, который не обладает денатурирующими свойствами, не образует ионных связей, является рН-независимым, может быть удален из раствора, делает возможной ионообменную хроматографию [Russell-Harde D., Knauf M., Croze E. The use of Zwittergent 3-14 in the purification of recombinant human interferon-beta Serl7 (Betaseron). // J. Interferon Cytokine Res. - 1995. - Vol.15(1). - P.31-37].

Известен наиболее близкий к заявленному способ очистки рИФН бета-1b из растворимого состояния с использованием аффинной хроматографии, катионно-обменной хроматографии и диафильтрации (Заявка РФ № 2006123543. «Способ очистки интерферона бета».

Однако в этом способе не учитывается возможность получения названного препарата из тел включения E.coli и не охарактеризованы связанные с этим особенности его очистки.

Изобретение решает задачу оптимизации условий очистки рИФН бета-1b на этапах отмывки и растворения тел включения E.coli, продуцирующей рекомбинантный интерферон бета-1b человека, в ходе технологического процесса рефолдинга целевого белка, а также при окислении последнего.

Заявляемый способ очистки рекомбинантного интерферона бета-1b из тел включения E.coli предусматривает следующие основные стадии: (1) отмывка тел включения; (2) растворение тел включения; (3) рефолдинг целевого белка; (4) прехроматографическая подготовка образца; (5) хроматография на Ceramic S; (6) хроматография на Source S30; (7) окисление; (8) гель-фильтрация на Superdex 75 Prep grade; (9) хроматография на Source Q30; (10) гель-фильтрация на Sephacril S200HR; (11) контроль эффективности очистки целевого белка методом высокоэффективной жидкостной хроматографии (ВЭЖХ) с последующим стандартным определением его противовирусной активности.

Отличительными особенностями заявляемого способа являются:

- в ходе отмывки тел включения навеску размороженных тел включения ресуспендировали в 10 мл 2% водного раствора цвиттергента 3-14;

- раствор для рефолдинга целевого белка содержит 20 мМ Трис-HCl, pH 9.0, 0,2% полиэтиленгликоль (PEG) 3550, 300 мМ NaCl, 2 мМ восстановленного глутатиона (GSH), 1 мМ окисленного глутатиона (GSSG), 2 мМ этилендиаминтетрауксусной кислоты (ЭДТА), 0,05% цвиттергента 3-14;

- в ходе предхроматографической подготовки образца используют буфер Б следующего состава: 25 мМ Трис-HCl, pH 8.0, 0,05% цвиттергент 3-14, 0,5 мМ фенилметансульфонил-флуорида (PMSF);

- в процессе хроматографии используют буферы: (1) 25 мМ Трис-HCl, pH 8.0, 0,05% цвиттергент 3-14, 0,5 мМ PMSF; (2) 25 мМ Трис-HCl, pH 8.0, 50 мМ NaCl, 0,05% цвиттергент 3-14, 0,5 мМ PMSF; (3) 25 мМ Трис-HCl, pH 8.0, 1 М NaCl, 0,05% Цвиттергент 3-14, 0,5 мМ PMSF;

- для окисления целевого белка используют смесь цистеамин/цистамин в концентрации 1 мМ/0,1 мМ.

Контроль выхода и активности рекомбинантного интерферона бета-1b после очистки показал соответствие следующим критериям: выход 10%, мультимеры по гель-фильтрации <5%, родственные белки по обращенно-фазовой хроматографии <5%, родственные белки по электрофорезу в полиакриламидном геле в присутствии додецилсульфата натрия (ДСН-ПААГ) <5%, белки штамма-продуцента по иммуноферментному анализу (ИФА) <5 нг/мг, эндотоксины по LAL-тесту (тесту с применением "Limulus Amebocite Lisate" - лизата клеток краба-мечехвоста) <5 ЭЕ/мг (эквивалентных единиц на 1 миллиграмм), удельная активность интерферона бета-1b 32 млн МЕ/мг (Международных Единиц на 1 миллиграмм).

Изобретение иллюстрируют примеры.

Пример 1. Оптимизация рефолдинга и окисления рекомбинантного интерферона бета-1b из тел включения E.coli с использованием цвиттергента 3-14

Целесообразность использования цвиттергента 3-14 в процессе растворения и рефолдинга рекомбинантного интерферона бета-1b из тел включения E.coli потребовала оптимизации условий их выполнения. С этой целью были составлены полуэмпирические формулы, и на их основе осуществлен подбор оптимального соотношения ингредиентов в процессе рефолдинга целевого белка и его окисления из предполагаемого интервала значений, как это представлено в таблицах 1-2 и формулах 1-2.

Таблица 1 Определение общего соотношения параметров ингредиентов в процессе рефолдинга рИФН бета-1b Переменная Описание Верхнее значение Нижнее значение A pH 7,5 9,0 B Полиэтиленгликоль 3550 0% 0,1% C Мочевина 0 M D NaCl 50 мМ 300 мМ Е Цистеамин/цистамин 1 мМ/0,3 мМ 1 мМ/0,1 мМ F Цвиттергент 3-14 25% G Температура 10°C

Формула 1. Общее соотношение параметров ингредиентов с обозначением их взаимозависимости:

Таблица 2 Определение соотношения параметров ингредиентов в процессе окисления ИФН бета-1b Переменная Описание Верхнее значение Нижнее значение A pH 7,5 9,0 B Полиэтиленгликоль 3550 0% 0,1% D NaCl 50 Мм 300 Мм E Цистеамин/цистамин 1 Мм/0,3 Мм 1 Мм/0,1 Мм

Формула 2. Соотношение изолированной группы параметров с обозначением их взаимозависимости:

В конечном итоге были установлены следующие финальные параметры выполнения рефолдинга и окисления ИФН бета-1b:

- Цвиттергент 3-14: 0,05%;

- Трис-HCl, 10 мМ: рН 7,5;

- Температура: +10°С;

- Nacl: 50 мМ;

- ЭДТА-Na: 1 мМ;

- Цистеамин/цистамин: 1 мМ/0,1 мМ.

Соблюдение этих условий позволяло добиваться 70% выхода целевого белка после осуществления рефолдинга и 10% выхода после полного цикла очистки.

Пример 2. Очистка рекомбинантного интерферона бета-1b из тел включения E.coli

Отмывка, растворение и рефолдинг тел включения. В процессе растворения и рефолдинга тел включения использовался буфер А следующего состава: 7 М гуанидин хлорид, 20 мМ дитиотреитол (DTT), 0,5 мМ PMSF.

Навеску размороженных тел включения (500 мг) ресуспендировали в 10 мл 2% водного раствора цвиттергента 3-14, суспензию перемешивали в течение 10-15 мин при комнатной температуре и центрифугировали при ускорении 500g и температуре 4°С 15 минут. Супернатант удаляли и повторяли процедуру центрифугирования. Выход по белку на этой стадии ~50-60%.

250 мг отмытых телец включения ресуспендировали в 2,5 мл буфера А, суспензию инкубировали 2 часа при 60°С. Нерастворившийся материал удаляли центрифугированием с ускорением 12000g при температуре 4°С 10 мин.

Готовили раствор для рефолдинга (указаны конечные концентрации компонентов, конечный объем 50 мл) - 20 мМ Трис-HCl, pH 9.0, 0,2% PEG 3550, 300 мМ NaCl, 2 мМ восстановленного глутатиона (GSH), 1 мМ окисленного глутатиона (GSSG), 2 мМ ЭДТА, 0,05% цвиттергент 3-14 - и добавляли в него растворенные в буфере А тела включения. Полученный раствор перемешивали и инкубировали при 10°С в течение ночи.

Предхроматографическая подготовка образца. Использовался буфер Б следующего состава: 25 мМ Трис-HCl, pH 8.0, 0,05% цвиттергент 3-14, 0,5 мМ PMSF.

Полученный в растворе образец разбавляли буфером Б в 6 раз, выпавший осадок удаляли центрифугированием (14000g, 20 мин, 4°С). В супернатанте доводили pH и проводимость до соответствующих значений буфера Б, после чего его концентрировали до исходного объема на ультрафильтрационной ячейке Amicon (мембрана РМ-10) и затем центрифугировали (14000g, 10 мин, 4°С).

Хроматографическая очистка рИФН бета-1b, его окисление и гелъ-филътрация. Для стабильности процесса очистки на данном этапе использовались буферы: Б - 25 мМ Трис-HCl, pH 8.0, 0,05% цвиттергент 3-14, 0,5 мМ PMSF; В - 25 мМ Трис-HCl, pH 7,5, 50 мМ NaCl, 0,05% цвиттергент 3-14, 0,5 мМ PMSF; Г - 25 мМ Трис-HCl, рН 7,5, 1 М NaCl, 0,05% цвиттергент 3-14, 0,5 мМ PMSF.

Подготовленный образец растворенных тел включения вводили (3 мл/мин) на колонку HyperD Ceramic S (Ciphergen, 10/100 мм, максимальное давление 30 атм), уравновешенную 10 объемами буфера Б. Оптическую плотность элюата контролировали спектрофотометрически на длине волны 280 нм. Проскок в объеме нанесенного образца (50 мл) собирали и связавшиеся примесные вещества удаляли промывкой 3 объемами буфера Г. Колонку регенерировали 1 объемом 100 мМ NaOH и уравновешивали стартовым буфером (Б).

Порцию образца (10 мл) наносили на колонку Source S30 (10/100 мм, максимальное давление 30 атм, 2,5 мл/мин), уравновешенную 10 объемами буфера Б, собирая проскок. Колонку промывали 2-5 объемами буфера Б и элюировали связавшийся материал градиентом концентрации NaCl (0-500 мМ, 5 объемов колонки, 3 мл/мин). Оптическую плотность элюата контролировали спектрофотометрически на длине волны 280 нм. Собирали фракцию, выходящую в 150-200 мМ NaCl. Перед нанесением следующей порции образца колонку регенерировали 1 объемом 100 мМ NaOH и уравновешивали стартовым буфером (Б). Процедуру повторяли для объединенного проскока с колонки Source S30.

Собранные фракции рИФН бета-1b объединяли и в полученный раствор добавляли цистеамин/цистамин до концентрации 1 мМ/0,1 мМ. Образец инкубировали в течение ночи при 4°С, центрифугировали (12000g, 4°С, 10 мин) и супернатант концентрировали до 1,5 мл на ультрафильтрационной ячейке Amicon (мембрана РМ-10).

Образец окисленного рИФН бета-1b (1,5 мл) вводили на колонку Superdex 75 Prep grade (16/500 мм, 13000 т.т./м, максимальное давление 5 атм), уравновешенную буфером В Разделение вели в буфере В, на скорости 30 см/ч. Оптическую плотность элюата контролировали спектрофотометрически на длине волны 280 нм (нанометров). Собирали основную фракцию (время удерживания 39,25 мин).

Образец рИФН бета-1b наносили на колонку Source Q30 (10/100 мм, максимальное давление 30 атм (атмосфер), 2,5 мл/мин), уравновешенную 10 объемами буфера В, собирая проскок. Колонку промывали 2-5 объемами буфера В и элюировали связавшийся материал градиентом концентрации NaCl (50-1000 мМ, 10 объемов колонки, 4 мл/мин). Оптическую плотность элюата контролировали спектрофотометрически на длине волны 280 нм. Собирали фракцию, выходящую в 200-300 мМ NaCl. Колонку регенерировали промывкой 1 объемом 100 мМ HCl. Собранную фракцию концентрировали до 1 мл на ультрафильтрационной ячейке Amicon (мембрана РМ-10).

Образец рИФНβ-1b (1 мл) вводили на колонку Sephacryl S200HR (16/600 мм, >5000 т.т./м, максимальное давление 1,5 атм), уравновешенную буфером В. Разделение вели в буфере В на скорости 15 см/ч. Оптическую плотность элюата контролировали спектрофотометрически на длине волны 280 нм. Собирали основную фракцию (время удерживания 95,3 мин).

Пример 3. Контроль эффективности способа очистки рекомбинантного интерферона β-1b из тел включения E.coli

Эффективность предложенного способа очистки рИФНβ-1b контролировалась в процессе получения 11 партий опытных образцов препарата с последующим определением их противовирусной активности. Протоколы получения даух опытных партий представлены в таблицах 3 и 4.

При получении опытной партии S4/2401 количество тел включения E.coli до отмывки составляло 500 мг, после отмывки - 230 мг. Конечное содержание рИФН бета-1b составляло 1,88 мг (10%).

В процессе получения опытной партии S4/1301 количество тел включения E.coli до отмывки составляло 1000 мг, после отмывки - 460 мг. Конечное содержание рИФН бета-1b составляло 3,76 мг (10%).

Оценку биологической (антивирусной) активности 11 образцов рекомбинантного ИНФ бета-1b проводили в диплоидной культуре фибробластов человека М27 (НИИ полиомиелита и вирусных энцефалитов им. М.П.Чумакова РАМН). В качестве тест-вируса использовали вирус энцефаломиокардита мышей (ЕМС) в количестве 100 ЦТД50 (цитотоксическая доза, вызывающая цитотоксический эффект у 50% образцов клеточных культур). За единицу активности ИФН принимали величину, обратную его разведению, при которой наблюдается 50% защита клеток от цитодеструктивного действия, вызванного репликацией тест-вируса. Контролем служил образец препарата «Бетаферон» (Schering AG, USA). Протокол титрования представлен в таблице 5.

Таблица 3 Протокол получения опытной партии S4/2401 рИФН бета-1b № п/п Объем, мл Стадия процесса Чистота по ВЭЖХ, % Кол-во по ВЭЖХ, мг Выход стадии по ВЭЖХ, % Общий выход, % LAL, ЕЭ/мг Белки E.coli, нг/мг 1 20 Исходные тела включения - 18,8 - 100% - - 2 9 Отмытые тела включения - 11,1 59% 59% - - 3 211 Солюбилизация в цвиттергенте 3-14 - 5,6 51% 30% - 29472 4 40 Хроматография на Source S30 - 4,0 72% 22% - 1705,1 5 40 Окисление 91% 3,9 96% 21% - 897,63 6 15 Гель-фильтрация на Superdex 75 95,6% 2,4 62% 13% - 1532,6 7 24 Хроматография на Source Q30 95,1% 2,4 97% 12% - 1645,6 8 8 Гель-фильтрация на Sephacril S200HR 97,9% 2,1 88% 11% - 1413,7 9 50 Хроматография на Source C4/G25 - 1,88 71% 10% - - 10 Готовая форма 3 3,4

Таблица 4 Протокол получения опытной партии S4/1301 рИФН бета-1b № п/п Объем, мл Стадия процесса Чистота по ВЭЖХ, % Кол-во по ВЭЖХ, мг Выход стадии по ВЭЖХ, % Общий выход, % LAL, ЕЭ/мг Белки E.coli, нг/мг 1 40 Исходные тела включения - 37,6 - 100% - - 2 18 Отмытые тела включения - 22,2 59% 59% - - 3 200 Рефолдинг - 18,2 82% 48% - - 4 200 Обессоливание/ концентрирование - 16,3 90% 43% - 29472 5 20 Хроматография на Source S30 - 11,3 69% 30% - 1705 6 5,5 Окисление/концентрирование 59,8 12,0 107% 32% - 897,6 7 27 Гель-фильтрация на Superdex 75 90,7 8,4 70% 22% - 1533 8 30 Хроматография на Source Q30 87,9 6,7 79% 18% - 1646 9 7,5 Гель-фильтрация на Sephacril S200HR 97,0 4,7 71% 13% - 1414 10 4,5 Хроматография на Source C4/G25 96,5 3,76 68% 10% - - 11 5 Готовая форма 3 3,4 Таблица 5 Результаты титрования образцов рИФHβ-1b Образцы рИФНр-1b Содержание ИФН В объеме Титр интерферона, Ед/0,2 мл Средняя удельная активность №1 0,023 мг 0,5 мл 6,4×105 №2 0,023 мг 0,5 мл 7,56×105 №3 0,023 мг 0,5 мл 6,4×105 №4 0,023 мг 0,5 мл 7,56×105 №5 0,023 мг 0,5 мл 8,2×105 №6 0,023 мг 0,5 мл 7,56×105 32×106 МЕ/мг №9 0,023 мг 0,5 мл 7,56×105 №10 0,023 мг 0,5 мл 7,56×105 №11 0,023 мг 0,5 мл 6,4×105 Контроль (Бетаферон) 0,023 мг 0,5 мл 6,4×105 30×106 МЕ/мг

Как показывают протоколы исследований, предлагаемый оптимизированный способ очистки позволяет получить субстанцию рИФН бета-1b в полной мере отвечающей требованиям нормативных документов, при этом полученный рИФН бета-1b по удельной противовирусной активности не уступает зарубежному аналогу Бетаферону. В целом предлагаемый способ очистки тел включения E.coli позволяет получить субстанцию рИФН бета-1b со следующими показателями:

- выход целевого белка: 10%;

- мультимеры по гель-фильтрации: <5%;

- родственные белки по обращенно-фазовой хроматографии: <5%;

- родственные белки по ДСН-ПААГ: <5%;

- белки штамма-продуцента по ИФА: <5 нг/мг;

- эндотоксины по ЛАЛ-тесту: <5 ЭЕ/мг;

- удельная активность: 32 млн МЕ/мг.

Похожие патенты RU2392282C1

название год авторы номер документа
ПРОМЫШЛЕННЫЙ СПОСОБ ПОЛУЧЕНИЯ И ОЧИСТКИ РЕКОМБИНАНТНОГО ИНТЕРФЕРОНА β-1b ЧЕЛОВЕКА ИЗ ТЕЛЕЦ ВКЛЮЧЕНИЯ 2011
  • Бобрускин Алексей Игоревич
  • Кононова Наталья Вячеславовна
  • Мартьянов Виталий Афанасьевич
  • Шустер Александр Михайлович
RU2473696C1
РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК pTrcIFdL, КОДИРУЮЩАЯ ПОЛИПЕПТИД С АКТИВНОСТЬЮ ГАММА-ИНТЕРФЕРОНА ЧЕЛОВЕКА, И ШТАММ БАКТЕРИЙ Escherichia coli - ПРОДУЦЕНТ ПОЛИПЕПТИДА С АКТИВНОСТЬЮ ГАММА-ИНТЕРФЕРОНА ЧЕЛОВЕКА 2009
  • Шингарова Людмила Николаевна
  • Болдырева Елена Филипповна
  • Тихонов Роман Владимирович
  • Якимов Сергей Александрович
  • Вульфсон Андрей Николаевич
  • Долгих Дмитрий Александрович
  • Кирпичников Михаил Петрович
RU2399670C1
Рекомбинантная плазмидная ДНК pET21-IFN-γ, содержащая ген, кодирующий гамма-интерферон человека, штамм E.coli BL21/pET21-IFN-γ - продуцент рекомбинантного гамма-интерферона человека и способ получения гамма-интерферона человека 2023
  • Щербаков Дмитрий Николаевич
  • Волосникова Екатерина Александровна
  • Волкова Наталья Вячеславовна
  • Есина Татьяна Игоревна
  • Терещенко Тамара Анатольевна
  • Гогина Яна Станиславовна
RU2827613C1
СПОСОБ ОЧИСТКИ РЕКОМБИНАНТНОГО БЕЛКА ИНТЕРФЕРОНОПОДОБНОГО ФАКТОРА III ТИПА 2012
  • Хаитов Муса Рахимович
  • Сидорович Игорь Георгиевич
  • Шевалье Александр Федорович
  • Гасанов Вагиф Али Оглы
  • Шиловский Игорь Петрович
RU2549710C2
СПОСОБ ПОЛУЧЕНИЯ РЕКОМБИНАНТНОГО ИНТЕРФЕРОНА-АЛЬФА-2 ИЗ НЕРАСТВОРИМЫХ ТЕЛ ВКЛЮЧЕНИЯ 1996
  • Бажутина Н.В.
  • Гурьев В.П.
  • Гурьева Т.Л.
  • Закабунин А.И.
  • Колокольцов А.А.
  • Ковригина М.А.
  • Моисеенкова О.А.
  • Романов В.П.
  • Юдина И.В.
RU2123010C1
МОЛЕКУЛА ИНТЕРФЕРОНА-β-1а ЧЕЛОВЕКА, МОДИФИЦИРОВАННАЯ ПОЛИЭТИЛЕНГЛИКОЛЕМ, ОБЛАДАЮЩАЯ ПРОТИВОВИРУСНОЙ, ИММУНОМОДУЛИРУЮЩЕЙ И АНТИПРОЛИФЕРАТИВНОЙ АКТИВНОСТЯМИ, С ПОВЫШЕННОЙ СТАБИЛЬНОСТЬЮ, УМЕНЬШЕННОЙ ИММУНОГЕННОСТЬЮ, УЛУЧШЕННЫМИ ФАРМАКОКИНЕТИЧЕСКИМИ И ФАРМАКОДИНАМИЧЕСКИМИ ПАРАМЕТРАМИ, ПРИГОДНАЯ ДЛЯ МЕДИЦИНСКОГО ПРИМЕНЕНИЯ И ИММУНОБИОЛОГИЧЕСКОЕ СРЕДСТВО НА ЕЕ ОСНОВЕ 2013
  • Черновская Татьяна Вениаминовна
  • Ефанов Юрий Георгиевич
  • Морозов Дмитрий Валентинович
  • Руденко Елена Георгиевна
  • Коржавин Дмитрий Валерьевич
  • Устюгов Яков Юрьевич
  • Иванов Роман Алексеевич
RU2576372C2
СИСТЕМА ЭКСПРЕССИИ И СПОСОБ ПОЛУЧЕНИЯ НЕМОДИФИЦИРОВАННЫХ РЕКОМБИНАНТНЫХ БЕЛКОВ В Escherichia coli С ЕЁ ИСПОЛЬЗОВАНИЕМ 2015
  • Гончарук Дмитрий Алексеевич
  • Ткач Елена Николаевна
  • Зейналов Орхан Ахмед Оглы
RU2604796C1
ШТАММ БАКТЕРИЙ Escherichia coli - ПРОДУЦЕНТ БЕЛКА ТЕПЛОВОГО ШОКА 70 И СПОСОБ ПОЛУЧЕНИЯ ПРЕПАРАТА БЕЛКА ТЕПЛОВОГО ШОКА ЧЕЛОВЕКА 2013
  • Ищенко Александр Митрофанович
  • Симбирцев Андрей Семенович
  • Маргулис Борис Александрович
  • Гужева Ирина Владимировна
  • Шевцов Максим Алексеевич
  • Жахов Александр Владимирович
  • Злобина Ольга Владимировна
  • Соловьева Людмила Яковлевна
  • Горбунова Ирина Николаевна
RU2564120C2
РЕКОМБИНАНТНАЯ ПЛАЗМИДА, ШТАММ Escherichia coli, ХИМЕРНЫЙ БЕЛОК И ИХ ПРИМЕНЕНИЕ 2010
  • Аксенова Екатерина Ивановна
  • Лящук Александр Михайлович
  • Сергиенко Ольга Васильевна
  • Галушкина Зоя Михайловна
  • Полетаева Нина Николаевна
  • Кондратьева Татьяна Константиновна
  • Рубакова Эльвира Ивановна
  • Апт Александр Соломонович
  • Карягина-Жулина Анна Станиславовна
  • Лунин Владимир Глебович
  • Гинцбург Александр Леонидович
RU2422524C1
СПОСОБ ПОЛУЧЕНИЯ ПРЕПАРАТА БЕЛКА ИЗ СЕМЕЙСТВА СТРЕССОВЫХ И ПРЕПАРАТ БЕЛКА HSP70, ПОЛУЧЕННЫЙ ЭТИМ СПОСОБОМ 2005
  • Дигтярь Антон Васильевич
  • Корженевский Дмитрий Андреевич
  • Луценко Елена Валерьевна
  • Луценко Сергей Викторович
  • Савватеева Людмила Владимировна
  • Северин Евгений Сергеевич
  • Северин Сергей Евгеньевич
  • Соловьев Андрей Иванович
  • Фельдман Наталия Борисовна
RU2283128C1

Реферат патента 2010 года СПОСОБ ОЧИСТКИ РЕКОМБИНАНТНОГО ИНТЕРФЕРОНА β-1b

Изобретение относится к области биотехнологии, в частности к способу получения рекомбинантного интерферона бета-1b человека. Предложенный способ очистки рекомбинантного интерферона бета-1b человека (рИФН бета-1b) предусматривает оптимизацию процессов отмывания тел включения, их растворения и рефолдинга целевого белка. Очистка рИФН бета-1b человека ведется с использованием в качестве основного детергента цвиттергента 3-14 для отмывки и растворения тел включения E.coli с последующим рефолдингом рИФН бета-1b, после чего осуществляют прехроматографическую обработку образца. Далее проводят хроматографию на Ceramic S, хроматографию на Source S30 и окисление с использованием смеси цистеамин/цистамин, после чего делают гель-фильтрацию на Superdex 75 Prep grade, хроматографию на Source Q30, гель-фильтрации на Sephacril S200HR и в конце осуществляют контроль эффективности очистки целевого белка методом высокоэффективной жидкостной хроматографии. Предложенный способ очистки позволяет обеспечить 10% выход целевого белка и получить рИФН бета-1b человека, отвечающий требованиям нормативных документов с высоким уровнем удельной противовирусной активности. 5 табл.

Формула изобретения RU 2 392 282 C1

Способ очистки рекомбинантного интерферона β-1b из тел включения E.coli, включающий отмывку тел включения в 10 мл 2%-ного водного раствора цвиттергента 3-14 с последующим удалением нерастворившегося материала центрифугированием с использованием промывочного буферного раствора с pH 7,5, растворение тел включения в буфере, содержащем 7 М гуанидинхлорида, 20 мМ дитиотреитола и 0,5 мМ фенилметансульфонилфлуорида, рефолдинг целевого белка в растворе, содержащем 20 мМ Трис-HCl, pH 9,0, 0,2% полиэтиленгликоля 3550, 300 мМ NaCl, 2 мМ восстановленного глутатиона, 1 мМ окисленного глутатиона, 2 мМ этилендиаминтетрауксусной кислоты и 0,05% Цвиттергента 3-14 с последующими прехроматографической подготовкой образца с использованием буфера, содержащего 25 мМ Трис-HCl, pH 8,0, 0,05% Цвиттергент 3-14, 0,5 мМ фенилметансульфонилфлуорида, хроматографией на Ceramic S с использованием буфера, содержащего 25 мМ Трис-HCl, pH 8,0, 0,05% Цвиттергента 3-14, 0,5 мМ фенилметансульфонилфлуорида, хроматографией на Source S30 с использованием буфера, содержащего 25 мМ Трис-HCl, pH 8,0, 0,05% Цвиттергента 3-14, 0,5 мМ фенилметансульфонилфлуорида, окислением смесью цистеамина с цистамином в концентрации 1 мМ/0,1 мМ соответственно, гель-фильтрацией на Superdex 75 Prep grade с использованием буфера, содержащего 25 мМ Трис-HCl, pH 7,5, 50 мМ NaCl, 0,05% Цвиттергента 3-14, 0,5 мМ фенилметансульфонилфлуорида, хроматографией на Source Q30 с использованием буфера, содержащего 25 мМ Трис-HCl, pH 7,5, 50 мМ NaCl, 0,05% Цвиттергента 3-14, 0,5 мМ фенилметансульфонилфлуорида и гель-фильтрацией на Sephacril S200HR с использованием буфера, содержащего 25 мМ Трис-HCl, pH 7,5, 50
мМ NaCl, 0,05% Цвиттергента 3-14, 0,5 мМ фенилметансульфонилфлуорида, а контроль эффективности очистки целевого белка методом высокоэффективной жидкостной хроматографии с последующим стандартным определением его противовирусной активности.

Документы, цитированные в отчете о поиске Патент 2010 года RU2392282C1

2006123543, 10.01.2008
WO 2005054289 A1, 16.06.2005
WO 2005054288 A1, 16.06.2005
RUSSELL-HARDE D
ET AL., The use of Zwittergent 3-14 in the purification of recombinant human interferon-beta Serl7 (Betaseron), J Interferon Cytokine Res., 1995, v.15, n.1, p.31-37.

RU 2 392 282 C1

Авторы

Воробьев Иван Иванович

Пономаренко Наталья Александровна

Мирошников Анатолий Иванович

Смирнов Иван Витальевич

Даты

2010-06-20Публикация

2008-10-06Подача