ЭЛЕКТРОЛИТ ДЛЯ ПОЛУЧЕНИЯ Co-Ni ПОКРЫТИЙ Российский патент 2010 года по МПК C25D3/56 

Описание патента на изобретение RU2392357C1

Область техники

Изобретение относится к области получения гальванических покрытий сплавом Со-Ni на сталях и алюминии и его сплавах и может быть использовано в машиностроении, приборостроении, авиационной промышленности и др.

Уровень техники

Известен сульфаматный электролит для получения магнитотвердых Co-Ni покрытий [Гальванотехника: Справ. Изд. / Ф.Ф.Ажогин, М.А.Беленький, И.Е.Галь и др. М.: Металлургия, 1987. - 736 с.], содержащий (г/л):

Сульфамат никеля 225 Сульфамат кобальта 225 Борная кислота 30 Хлорид магния 15 pH 1-3 Катодная плотность тока, А/дм2 1-2 Температура, °С 40-50

Недостатком аналога являются: малая устойчивость электролита, сложность в приготовлении, низкая твердость и износостойкость покрытий, а также сравнительно высокая стоимость электролита из-за наличия в нем больших концентраций сульфаматных солей никеля и кобальта.

Известен сульфатный электролит для электроосаждения магнитотвердых сплавов Co-Ni [Гальванотехника: Справ. Изд. / Ф.Ф.Ажогин, М.А.Беленький, И.Е.Галь и др. М.: Металлургия, 1987. - 736 с.], содержащий (г/л):

Сульфат никеля 110-120 Сульфат кобальта 130-140 Борная кислота 20-30 Хлорид калия 4-5 pH 4-5 Катодная плотность тока, А/дм2 1,0-2,0 Температура, °С 40-50

Недостатком аналога являются: низкая рассеивающая способность электролита, низкая твердость и износостойкость покрытий, а также сравнительно высокая стоимость электролита из-за наличия в нем большого количества сернокислых солей, особенно сернокислой соли кобальта.

Наиболее близким к предлагаемому по технической сущности и достигаемому результату, то есть прототипом является сульфатный электролит [патент РФ №2349686, опубликован 20.03.2009, «Способ электроосаждения покрытий сплавом кобальт - никель»], содержащий (г/л):

Сульфат кобальта (по металлу) 30 Сульфат никеля (по металлу) 17-25 Борная кислота 25 Хлорид калия 5

Недостатками прототипа являются низкая рассеивающая способность электролита, высокие внутренние напряжения покрытий, низкая твердость, высокая шероховатость поверхности и не достаточная износостойкость, а также не очень высокая коэрцетивная сила покрытия.

Сущность изобретения

Задача изобретения - повышение рассеивающей способности электролита, увеличение микротвердости и износостойкости Co-Ni покрытий, уменьшение шероховатости поверхности, снижение внутренних напряжений, получение покрытий, обладающих высокой коэрцетивной силой на стали, алюминии и алюминиевых сплавах.

Поставленная задача достигается путем создания электролита для получения покрытия Co-Ni, включающего сульфат никеля, сульфат кобальта, хлорид калия и воду, который дополнительно содержит аммоний щавелевокислый, уксуснокислый натрий и фторид натрия, при следующем соотношении компонентов, г/л:

Сульфат никеля 20-40 Сульфат кобальта 40-60 Аммоний щавелевокислый 50-200 Уксуснокислый натрий 25-35 Хлорид калия 1-3 Фторид натрия 1-3 pH 4-5 Температура, °С 20-80 Катодная плотность тока, А/дм2 0,5-5

Сульфат никеля, 7-водный, ГОСТ 4465-74, ч, химическая формула NiSO4·7H2O, плотность 1,949 г/см3, температура плавления выше 700°С, растворимость 21,4 г в 100 г холодной и 43,42 в 100 г горячей воды.

Сульфат кобальта, 7-водный, ГОСТ 4462-78, ч, химическая формула СоSO4·7Н2О, плотность 2,029 г/см3, температура плавления 420°С, растворимость при 25°С составляет 39,3 г на 100 г воды и до 100 г повышается с температурой.

Аммоний щавелевокислый, 1-водный, аммоний оксалат, ГОСТ 5712-78, чда, химическая формула (NH4)2C2O4·H2O, плотность 1,50 г/см3, температура плавления - разлагается, растворимость 2,6 г в 100 г холодной воды и 11,8 г в 100 г горячей воды.

Уксуснокислый натрий, 3-водный, ГОСТ 2080-76, чда, химическая формула СН3СООNa·3H2O, плотность 1,528 г/см3, температура плавления - 324°С, растворимость 119 г в 100 г холодной воды и 170,15 г в 100 г горячей воды.

Хлорид калия, ГОСТ 4868-95, ч, химическая формула KСl, плотность 1,989 г/см3, температура плавления - 771°С, растворимость 28,1 г в 100 г холодной воды и 56,2 г в 100 г горячей воды.

Фторид натрия, ГОСТ 4463-76, ч, химическая формула NaF, плотность 2,79 г/см3, температура плавления - 992°С, растворимость в воде 41,5 г/л при 20°С.

Сведения, подтверждающие возможность осуществления изобретения

Пример 1. Для приготовления 1 л электролита 50 г аммония щавелевокислого растворяли в воде при температуре 60°С. К раствору добавляли 20 г сульфата никеля и 40 г сульфата кобальта при перемешивании. Уксуснокислый натрий в количестве 25 г растворяли в 100 г воды при 60°С, затем вводили при перемешивании в раствор никеля и кобальта сернокислого и аммония щавелевокислого. В последнюю очередь вводили добавки хлорид калия и фторид натрия в количестве 1 г каждого. Затем объем полученного раствора доводили до 1 л водой и охлаждали до комнатной температуры. Примеры с другими значениями концентраций приведены в таблице 1.

Из приготовленных электролитов осаждали Co-Ni покрытия. Полученные образцы испытывали с целью определения следующих механических свойств покрытий: микротвердость, износостойкость, шероховатость и внутренние напряжения. При определении диапазона рабочей плотности тока устанавливали верхнюю и нижнюю границы катодной плотности тока. Для их определения на образцы из стали, алюминия и его сплава Д16 наносили Co-Ni покрытие толщиной до 6 мкм. Полученные покрытия по внешнему виду соответствуют требованиям ГОСТа 9.301-86, а по сцеплению с основным металлом - ГОСТу 9.302-88.

Рассеивающую способность определяли с помощью щелевой ячейки Моллера.

Микротвердость покрытий определяли с помощью ПМТ-3 при нагрузке 100 г.

Износостойкость определяли на машине СМТ-1 при следующих условиях: нагрузка 0,6 кН, пробег 1 км, пара трения Сталь 45-вращающийся диск - с исследуемым покрытием.

Шероховатость поверхности определяли с помощью профилограф-профилометра, модель 252 (с цифровым отсчетом).

Внутренние напряжения электроосажденных осадков определяли методом гибкого катода.

Коэрцетивную силу определяли с помощью вибрационного магнитометра Lake Shore.

При всех испытаниях характеристик получаемого покрытия проводили не менее 4-5 параллельных опытов и брали среднеарифметическое значение величин. Результаты испытаний представлены в таблице 2.

Из таблицы 2 видно, что предлагаемый электролит (примеры 1-3) позволяет получать Co-Ni покрытия, обладающие гораздо более высокими свойствами, чем прототип.

Другим преимуществом заявляемого электролита является то, что электролит обладает более высокой буферной емкостью, в силу чего требуется менее частая корректировка pH в процессе работы, имеет более широкий диапазон рабочей плотности тока, а также в электролите снижены концентрации основных компонентов, поэтому он имеет более низкую стоимость.

Таблица 1 Концентрация, г/л Номера примеров 1 2 3 Прототип Сульфат никеля 20 30 40 17-25 Сульфат кобальта 40 50 60 30 Борная кислота - - - 25 Аммоний щавелевокислый 50 125 200 - Натрий уксуснокислый 25 30 35 - Хлорид калия 1 2 3 5 Фторид натрия 1 2 3 - pH 4 4,5 5 4,5 Температура, °С 20 60 80 40 Катодная плотность тока, А/дм2 0,5 2 5 1-4

Похожие патенты RU2392357C1

название год авторы номер документа
ЭЛЕКТРОЛИТ ДЛЯ ПОЛУЧЕНИЯ НИКЕЛЬ-ЖЕЛЕЗНЫХ ПОКРЫТИЙ 2010
  • Юдина Татьяна Федоровна
  • Торопов Илья Владимирович
  • Калинин Александр Владимирович
  • Шеханов Руслан Феликсович
RU2424380C1
Композиционное металл-алмазное покрытие, способ его получения, дисперсная система для осаждения композиционного металл-алмазного покрытия и способ ее получения 2019
  • Есаулов Сергей Константинович
  • Кукушкин Сергей Сергеевич
  • Рыжов Евгений Васильевич
  • Светлов Геннадий Валентинович
RU2706931C1
Способ получения композиционного металл-алмазного покрытия на поверхности медицинского изделия, дисперсная система для осаждения металл-алмазного покрытия и способ ее получения 2020
  • Есаулов Сергей Константинович
  • Есаулова Целина Вацлавовна
  • Миняева Елена Владимировна
RU2746730C1
ЭЛЕКТРОЛИТ ДЛЯ ЭЛЕКТРООСАЖДЕНИЯ ОЛОВО-НИКЕЛЕВЫХ ПОКРЫТИЙ 2013
  • Шеханов Руслан Феликсович
  • Гридчин Сергей Николаевич
  • Балмасов Анатолий Викторович
RU2526656C1
ЭЛЕКТРОЛИТ ДЛЯ ЭЛЕКТРООСАЖДЕНИЯ ОЛОВО-КОБАЛЬТОВЫХ ПОКРЫТИЙ 2018
  • Шеханов Руслан Феликсович
  • Гридчин Сергей Николаевич
  • Балмасов Анатолий Викторович
  • Камышева Ксения Андреевна
RU2694095C1
Способ получения композиционного металл-дисперсного покрытия, дисперсная система для осаждения композиционного металл-дисперсного покрытия и способ ее получения 2020
  • Есаулов Сергей Константинович
  • Кукушкин Сергей Сергеевич
  • Светлов Геннадий Валентинович
  • Есаулова Целина Вацлавовна
RU2746861C1
Способ получения композиционного металл-дисперсного покрытия, дисперсная система для осаждения композиционного металл-дисперсного покрытия и способ ее получения 2020
  • Есаулов Сергей Константинович
  • Есаулова Целина Вацлавовна
RU2746863C1
ЭЛЕКТРОЛИТ ДЛЯ НИКЕЛИРОВАНИЯ ТИТАНА И ЕГО СПЛАВОВ 2003
  • Лукомский Ю.Я.
  • Шеханов Р.Ф.
RU2230138C1
ЭЛЕКТРОЛИТ НА ВОДНОЙ ОСНОВЕ ДЛЯ НИКЕЛИРОВАНИЯ ИЗДЕЛИЙ ИЗ СТАЛИ, АЛЮМИНИЯ, ТИТАНА, МЕДИ И ИХ СПЛАВОВ 2013
  • Красиков Алексей Владимирович
  • Ежов Андрей Андреевич
RU2543584C2
СПОСОБ НАНЕСЕНИЯ КОМПОЗИЦИОННОГО ЭЛЕКТРОХИМИЧЕСКОГО ПОКРЫТИЯ КОБАЛЬТ-КАРБИД ВОЛЬФРАМА 2023
  • Киреев Сергей Юрьевич
  • Синенкова Софья Руслановна
  • Киреева Светлана Николаевна
  • Зверовщиков Александр Евгеньевич
  • Глебов Максим Владимирович
  • Наумов Лев Васильевич
RU2796775C1

Реферат патента 2010 года ЭЛЕКТРОЛИТ ДЛЯ ПОЛУЧЕНИЯ Co-Ni ПОКРЫТИЙ

Изобретение относится к области получения гальванических покрытий сплавом Co-Ni на сталях и алюминии и его сплавах и может быть использовано в машиностроении, приборостроении, авиационной промышленности и др. Электролит включает, г/л: сульфат никеля 20-40, сульфат кобальта 40-60, аммоний щавелевокислый 50-200, уксуснокислый натрий 25-35, хлорид калия 1-3, фторид натрия 1-3 и воду. Технический результат: повышение рассеивающей способности электролита, увеличение микротвердости и износостойкости Co-Ni покрытий, уменьшение шероховатости поверхности, снижение внутренних напряжений, получение покрытий, обладающих высокой коэрцетивной силой на стали, алюминии и алюминиевых сплавах. 2 табл.

Формула изобретения RU 2 392 357 C1

Электролит для получения кобальт-никелевых покрытий, включающий сульфат никеля, сульфат кобальта, хлорид калия и воду, отличающийся тем, что он дополнительно содержит аммоний щавелевокислый, натрий уксуснокислый и фторид натрия при следующем соотношении компонентов, г/л:
сульфат никеля 20-40 сульфат кобальта 40-60 аммоний щавелевокислый 50-200 натрий уксуснокислый 25-35 хлорид калия 1-3 фторид натрия 1-3 вода до 1 л

Документы, цитированные в отчете о поиске Патент 2010 года RU2392357C1

СПОСОБ ЭЛЕКТРООСАЖДЕНИЯ ПОКРЫТИЙ СПЛАВОМ КОБАЛЬТ-НИКЕЛЬ 2007
  • Виноградов Станислав Николаевич
  • Таранцев Константин Валентинович
  • Виноградов Олег Станиславович
  • Вантеев Андрей Николаевич
  • Наумов Лев Васильевич
RU2349686C1
ЭЛЕКТРОЛИТ ДЛЯ ОСАЖДЕНИЯ СПЛАВА НИКЕЛЬ-КОБАЛЬТ 2006
  • Захаров Матвей Сафонович
  • Захарова Ольга Матвеевна
RU2333297C1
Способ изготовления селективного покрытия для поглощения солнечной энергии 1990
  • Авдеева Любовь Владимировна
  • Гаврилина Анна Ивановна
  • Гухман Галина Александровна
  • Лаврова Анна Анатольевна
  • Тарнижевский Борис Владимирович
SU1807094A1
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
Способ крашения тканей 1922
  • Костин И.Д.
SU62A1

RU 2 392 357 C1

Авторы

Торопов Илья Владимирович

Юдина Татьяна Федоровна

Шеханов Руслан Феликсович

Калинин Александр Владимирович

Даты

2010-06-20Публикация

2009-06-15Подача