СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНЫХ ПОЛОС ИЗ НИЗКОУГЛЕРОДИСТОЙ СТАЛИ Российский патент 2010 года по МПК B21B1/26 

Описание патента на изобретение RU2396134C2

Область техники

Изобретение относится к области прокатного производства и может быть использовано при непрерывной горячей прокатке стальных полос.

Уровень техники

Известен способ непрерывной горячей прокатки стальных полос на непрерывном широкополосном стане, который включает нагрев слябов, прокатку в черновой последовательной группе клетей, прокатку в непрерывной чистовой группе с межклетевым охлаждением, охлаждение полос после прокатки на отводящем рольганге и смотку в рулон [Целиков А.И. и др. Современное развитие прокатных станов. - М.: Металлургия, 1972. - С.105].

Известен также принятый заявителем за наиболее близкий аналог способ непрерывной горячей прокатки полос из низкоуглеродистой стали, включающий нагрев слябов, прокатку в черновой и чистовой группах клетей непрерывного широкополосного стана, душирование на отводящем рольганге и смотку [Сафьян М.М. Прокатка широкополосной стали. - М.: Металлургия, 1969. - С.337-346].

Недостатки известных способов заключаются в следующем.

Распределение обжатий по клетям непрерывной чистовой группы осуществляется по убывающему закону (от 50 до 5%).

При высоких значениях температуры (980-1000°С) и изменении относительных обжатий в первых клетях непрерывной чистовой группы стана от 50 до 35% за время последеформационных пауз (3-6 с) успевает пройти не только первичная, но и частично собирательная рекристаллизация - зерно после измельчения начинает расти.

При понижении температуры в последних клетях от 960 до 850°С и обжатий от 20 до 5% первичная рекристаллизация проходит лишь частично, что приводит к увеличению разнозернистости материала полосы.

Кроме того, распределение пластической деформации по толщине прокатываемой полосы (при данных значениях радиуса рабочих валков, толщины полосы на входе в клеть и коэффициента контактного трения) зависит от величины относительной деформации. При средней по толщине полосы деформации εср>35% поверхностные слои прокатываемой полосы испытывают деформацию меньше, а внутренние - больше средней. При средней деформации εcp<20-25% поверхностные слои полосы испытывают деформацию больше, а внутренние - меньше средней.

Указанные недостатки приводят к получению горячекатаной полосы с повышенными размером зерна и разнозернистости по длине, а также к зональной разнозернистости по толщине полосы, что понижает ее механические свойства.

Описание изобретения

Техническая задача данного изобретения - улучшение структуры и механических свойств готового проката.

Технический результат изобретения достигается изменением закона распределения обжатий по клетям чистовой группы непрерывного широкополосного стана (возрастание относительных обжатий по ходу прокатки, а в предпоследней и последней клетях - их снижение), а также началом душирования в момент окончания первичной рекристаллизации.

На чертеже изображена схема прокатки полос в чистовой группе клетей непрерывного широкополосного стана и душирования на отводящем рольганге, где 1 - заготовка, 2 - промежуточный рольганг, 3 - чистовая группа клетей, 4 - полоса, 5 - отводящий рольганг, 6 - душирующая установка.

Отличительные признаки

Способ отличается от известного тем, что прокатку в чистовой группе ведут вначале с повышением обжатий от 20-25 до 30-35% за каждый проход, в предпоследней клети с обжатием 5-12% за проход, а в последней 11-18% за проход, при этом начало душирования полосы осуществляется на отводящем рольганге в соответствии с моментом окончания первичной рекристаллизации после обжатия в последней клети чистовой группы.

Способ работает следующим образом.

Слябы нагревают, прокатывают в черновой группе клетей до получения заготовки. Заготовка 1 (см. чертеж) поступает по промежуточному рольгангу 2 со скоростью V0 к чистовой группе клетей 3, где прокатку полосы 4 ведут с постепенным повышением относительных обжатий ε от 20-25 до 30-35% за каждый проход, в предпоследней клети с обжатием 5-12% и в последней 11-18% за проход при скоростях прокатки V в последней клети 3-21 м/с. Здесь относительное обжатие (%), где h0, h1 - соответственно толщина полосы на входе и выходе из клети. Максимально допустимое обжатие определяется энергосиловыми ограничениями клетей чистовой группы стана.

Использование возрастающего закона распределения относительных обжатий по клетям чистовой группы от 20-25 до 30-35% обеспечивает увеличение продолжительность первичной рекристаллизации и соответственно уменьшение времени последующего собирательного роста зерна в первых межклетевых промежутках, а в последующих межклетевых промежутках - полное протекание первичной рекристаллизации. Обжатие 5-12% в предпоследней клети, являясь докритическим, не дает развиться первичной рекристаллизации за этой клетью и деформационный наклеп прокатываемой полосы суммируется с обжатием в последней клети. Все это обеспечивает получение мелкого и однородного зерна по длине и толщине полосы после горячей прокатки.

Полосу 4 душируют на отводящем рольганге 5 (см. чертеж). При этом начало душирования полосы 4 осуществляется в соответствии с моментом окончания первичной рекристаллизации после обжатия в последней клети чистовой группы 3. Момент окончания первичной рекристаллизации может быть определен по выражению:

τ=10a (с),

где ;

tк.п. - температура конца прокатки, °С;

εΣn-1nn-1·εn - суммарный деформационный наклеп за два последних (n-1 и n) обжатия;

b0÷b2 - коэффициенты.

Значения коэффициентов b0÷b2 определяются на основе результатов экспериментов. Для этого выполняют физическое моделирование условий формирования структуры аустенита при горячей прокатке полос на непрерывном широкополосном стане. Моделирование осуществляют на лабораторном стане с фиксацией границ зерен аустенита закалкой после различных выдержек прокатанных образцов на воздухе [Моделирование дробной горячей деформации на непрерывном стане / Железнов Ю.Д., Григорян Г.Г., Алдунин А.В., Максимова О.В. // Изв. вуз. Черная металлургия. - 1979. - №1. - С.64-67]. Затем на микрошлифах в поперечных сечениях образцов методом травления выявляют границы бывших зерен аустенита; методом секущих в направлении ширины каждого образца измеряют не менее 200 хорд, по результатам чего определяют средний размер зерна ,

его среднеквадратичное отклонение

и вариацию , где di - длина i-ой хорды, n - число измеренных хорд. Для отдельных образцов оценивают коэффициент анизотропии Е, определяемый отношением среднего размера зерна в направлении толщины к таковому в направлении ширины образца . По значениям параметров , γd и Е определяют состояние структуры аустенита для всех прокатанных образцов, относя их к разным областям в координатах «температура t - относительное обжатие ε - время τ»: А - инкубационного периода первичной рекристаллизации; В - процесса первичной рекристаллизации; С - инкубационного периода роста зерна; D - роста зерна. В спрямляющих координатах «1/Т - lgε - lgτ» указанные области разделятся плоскостями, которые описываются уравнениями вида:

Так для стали Ст3сп промышленной плавки (0,15% С, 0,52% Mn, 0,22% Si, 0,037% S, 0,019% P, 0,031% Cu, 0,033% Ni, 0,052% Al, 0,0065% N и 0,008% О) получены значения коэффициентов уравнения плоскости, разделяющей области В и С и определяющей завершенность первичной рекристаллизации (пониженное значение уменьшение γd до 0,50-0,55 и увеличение Е до 0,95-1,00) [Алдунин А.В. Построение качественной диаграммы рекристаллизации низкоуглеродистой стали для расчета режимов горячей прокатки полос // Проблемы повышения качества подготовки специалистов в области художественной обработки металлов: Материалы II Всероссийской межвузовской научн. - практ. конференции (г.Москва, 16 ноября 2004 г.). - М.: МГВМИ, 2004. - С.127-129]: b0=8,5699; b1=0,6031 и b2=0,6846. В уравнении данной плоскости при прокатке полосы в последней клети Т=tк.п.+273 и ε=εΣ.

Начало душирования в момент окончания первичной рекристаллизации после обжатия в последней клети чистовой группы обеспечивает получение структуры готовой полосы с минимальной разнозернистостью.

После душирования производят смотку полосы.

Данный способ производства обеспечивает получения мелкой и однородной структуры по длине и толщине горячекатаных полос из низкоуглеродистой стали (С=0,05-0,22%) толщиной 1,5-16,0 мм и повышение их механических свойств.

Способ может быть реализован на промышленном агрегате, например непрерывном широкополосном стане 2000, включающем нагревательные печи, последовательную пятиклетевую черновую группу, непрерывную семиклетевую чистовую группу, душирующую установку и моталки.

Пример реализации. В таблице 1 приведено распределение обжатий и скоростей по клетям непрерывной семиклетевой чистовой группы стана 2000 при прокатке полос сечением 6×1400 мм из низкоуглеродистой стали по известному и предлагаемому способам.

Таблица 1 Номер клети Окалиноломатель 6 7 8 9 10 11 12 По известному способу Толщина полосы, мм 34,7 23,0 16,7 12,5 10,0 8.2 6,8 6,0 Абсолютное обжатие, мм - 11,7 6,3 4,2 2,5 1,8 1,4 0,8 Относительное обжатие, % - 33,7 27.4 25,1 20,0 18,0 17,1 11,8 Скорость прокатки, м/с голова 1,55 2,00 2,60 3,32 4,17 4,41 5,06 хвост 1,58 2,04 2,65 3,39 4,26 4,50 5,18 По предлагаемому способу Толщина полосы, мм 34,7 26,5 20,1 15,1 11,2 8,1 7,2 6,0 Абсолютное обжатие, мм - 8,2 6,4 5,0 3,9 3,1 0,9 1,2 Относительное обжатие, % - 23,6 24,2 24,9 25,8 27,7 11,1 16,7 Скорость прокатки, м/с голова 1,51 1.95 2,53 3,23 4,06 4,29 4,93 хвост 1,54 1,99 2,58 3,30 4,15 4,38 5,04

При распределении обжатий по известному способу в межклетевых промежутках за клетями 6, 7 и 8 после завершения первичной рекристаллизации частично успевает пройти собирательный рост зерна. За клетями 9, 10 и 11 из-за неполного протекания первичной рекристаллизации и неравномерного распределения пластической деформации по толщине полосы структура получается разнозернистой. Начало душирования полосы на отводящем рольганге по известному способу осуществляется через 6,9 с после обжатия в последней клети чистовой группы. Все это приводит к получению разнозернистой структуры готовой полосы.

При распределении обжатий по предлагаемому способу в межклетевых промежутках за клетями 6, 7 и 8 продолжительность первичной рекристаллизации получается больше и соответственно время последующего собирательного роста зерна меньше, чем по прототипу. За клетями 9 и 10 структура получается однородной за счет полного протекания первичной рекристаллизации. Докритическое относительное обжатие в 11-ой клети не способствует протеканию за ней процесса первичной рекристаллизации и полученный деформационный наклеп суммируется с обжатием в 12-ой клети.

В таблице 2 приведены характеристики зеренной структуры и механические свойства полос сечением 6×1400 мм из стали химсостава, вес.%: 0,20 С; 0,49 Mn; 0,19 Si; 0,020 S; 0,018 P; 0,04 Cr; 0,04 Ni; 0,08 Cu и 0,059 Al, прокатанных по известному и предлагаемому способам с температурой конца прокатки tк.п.=860°С. Начало душирования полосы на отводящем рольганге по предлагаемому способу производится через 7,8 с после обжатия в последней клети чистовой группы, что обеспечивает минимальную разнозернистость готовой полосы.

Таблица 2 Средний размер зерна, мкм Среднеквадратичное отклонение, мкм Механические свойства Предел текучести, МПа Временное сопротивление, МПа По известному способу 8,62 0,23 По предлагаемому способу 7,39 0,16 Примечание. В числителе разброс, в знаменателе - среднее значение (5 образцов).

За счет формирования при прокатке более мелкого и однородного зерна по предлагаемому способу получаются более высокие и стабильные значения предела текучести и временного сопротивления готовых полос.

Похожие патенты RU2396134C2

название год авторы номер документа
3/4-НЕПРЕРЫВНЫЙ ШИРОКОПОЛОСНЫЙ СТАН С БЕСКОНЕЧНОЙ ГОРЯЧЕЙ ПРОКАТКОЙ ТОНКИХ ПОЛОС НИЗКОУГЛЕРОДИСТОЙ СТАЛИ 2012
  • Алдунин Анатолий Васильевич
RU2483815C1
СПОСОБ ПРОИЗВОДСТВА РУЛОНОВ ГОРЯЧЕКАТАНОЙ ТРУБНОЙ СТАЛИ 2004
  • Кузнецов Владимир Георгиевич
  • Смирнов Павел Николаевич
  • Голубчик Эдуард Михайлович
  • Денисов Сергей Владимирович
RU2268793C1
СПОСОБ ПРОИЗВОДСТВА РУЛОНОВ ГОРЯЧЕКАТАНОЙ ТРУБНОЙ СТАЛИ 2008
  • Денисов Сергей Владимирович
  • Смирнов Павел Николаевич
  • Голубчик Эдуард Михайлович
  • Торохтий Валерий Петрович
RU2373003C1
СПОСОБ ПРОИЗВОДСТВА РУЛОНОВ ГОРЯЧЕКАТАНОЙ ТРУБНОЙ СТАЛИ 2007
  • Денисов Сергей Владимирович
  • Смирнов Павел Николаевич
  • Голубчик Эдуард Михайлович
  • Торохтий Валерий Петрович
  • Казаков Игорь Владимирович
RU2350411C2
СПОСОБ ГОРЯЧЕЙ ПРОКАТКИ ЭЛЕКТРОТЕХНИЧЕСКОЙ АНИЗОТРОПНОЙ СТАЛИ 1999
  • Настич В.П.
  • Казаджан Л.Б.
  • Барятинский В.П.
  • Поляков М.Ю.
  • Савенков А.В.
  • Долматов А.П.
  • Рындин В.А.
  • Тищенко А.Д.
  • Говоров С.М.
  • Шляхов Н.А.
RU2152278C1
СПОСОБ ГОРЯЧЕЙ ПРОКАТКИ ПОЛОС 2004
  • Денисов Сергей Владимирович
  • Смирнов Павел Николаевич
  • Кузнецов Владимир Георгиевич
  • Голубчик Эдуард Михайлович
RU2267368C1
Листопрокатная клеть дуппель-кварто 2020
  • Алдунин Анатолий Васильевич
  • Сухоставский Максим Николаевич
  • Воробьёв Егор Александрович
RU2758397C1
СПОСОБ ПРОИЗВОДСТВА РУЛОНОВ ГОРЯЧЕКАТАНОЙ ПОЛОСЫ ТРУБНЫХ МАРОК СТАЛИ 2008
  • Денисов Сергей Владимирович
  • Смирнов Павел Николаевич
  • Голубчик Эдуард Михайлович
  • Торохтий Валерий Петрович
RU2393933C1
Способ производства особо тонких горячекатаных полос на широкополосном стане литейно-прокатного комплекса 2018
  • Ерыгин Вячеслав Алексеевич
  • Мунтин Александр Вадимович
  • Панов Алексей Владимирович
  • Азин Роман Юрьевич
  • Севидов Алексей Евгеньевич
  • Румянцев Александр Васильевич
  • Зотов Владимир Александрович
  • Тихонов Сергей Михайлович
  • Ионов Сергей Михайлович
  • Лиленко Евгения Александровна
RU2679159C1
СПОСОБ ПРОИЗВОДСТВА НИЗКОУГЛЕРОДИСТОЙ ЛИСТОВОЙ СТАЛИ 2005
  • Скорохватов Николай Борисович
  • Попов Евгений Сергеевич
  • Савиных Анатолий Федорович
  • Черноусов Василий Леонидович
  • Степаненко Владислав Владимирович
  • Гринберг Александр Давидович
  • Кругликова Галина Васильевна
  • Крутикова Людмила Афанасьевна
RU2288281C1

Иллюстрации к изобретению RU 2 396 134 C2

Реферат патента 2010 года СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНЫХ ПОЛОС ИЗ НИЗКОУГЛЕРОДИСТОЙ СТАЛИ

Изобретение предназначено для улучшения структуры и механических свойств готового проката при непрерывной горячей прокатке стальных полос. Способ включает нагрев слябов, прокатку в черновой и чистовой группах клетей непрерывного широкополосного стана, душирование на отводящем рольганге стана и смотку. Получение мелкой и однородной по длине и толщине горячекатаных полос структуры и повышенных механических свойств обеспечивается за счет того, что прокатку в чистовой группе клетей ведут вначале с повышением обжатий от 20-25 до 30-35% за каждый проход, в предпоследней клети с обжатием 5-12% за проход, а в последней - с обжатием 11-18% за проход. Начало душирования полосы осуществляют на отводящем рольганге с секции душирующей установки, номер которой определяется в соответствии с моментом окончания первичной рекристаллизации после обжатия в последней клети чистовой группы, 1 з.п. ф-лы, 1 ил., 2 табл.

Формула изобретения RU 2 396 134 C2

1. Способ производства горячекатаных полос из низкоуглеродистой стали, включающий нагрев слябов, прокатку в черновой и чистовой группах клетей непрерывного широкополосного стана, душирование на отводящем рольганге стана и смотку, отличающийся тем, что прокатку в чистовой группе клетей ведут вначале с повышением обжатий от 20-25 до 30-35% за каждый проход, в предпоследней клети - с обжатием 5-12% за проход, а в последней - с обжатием 11-18% за проход.

2. Способ производства по п.1, отличающийся тем, что душирование полосы на отводящем рольганге начинают в соответствии с моментом окончания первичной рекристаллизации после обжатия в последней клети чистовой группы.

Документы, цитированные в отчете о поиске Патент 2010 года RU2396134C2

Сафьян М.М
и др
Прокатка широкополосной стали
- М.: Металлургия, 1969, с.337-346
СПОСОБ ПРОИЗВОДСТВА РУЛОНОВ ГОРЯЧЕКАТАНОЙ ТРУБНОЙ СТАЛИ 2004
  • Денисов Сергей Владимирович
  • Смирнов Павел Николаевич
  • Кузнецов Владимир Георгиевич
  • Голубчик Эдуард Михайлович
RU2270064C1
СПОСОБ ПРОИЗВОДСТВА РУЛОНОВ ГОРЯЧЕКАТАНОЙ ТРУБНОЙ СТАЛИ 2004
  • Кузнецов Владимир Георгиевич
  • Смирнов Павел Николаевич
  • Голубчик Эдуард Михайлович
  • Денисов Сергей Владимирович
RU2268793C1
US 6616778 B1, 09.09.2003.

RU 2 396 134 C2

Авторы

Алдунин Анатолий Васильевич

Даты

2010-08-10Публикация

2008-10-10Подача