СПОСОБ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК АЭРОДИНАМИЧЕСКОГО ДЕМПФИРОВАНИЯ МОДЕЛЕЙ САМОЛЕТОВ С ВИНТОВЫМИ ДВИЖИТЕЛЯМИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ Российский патент 2010 года по МПК G01M9/00 

Описание патента на изобретение RU2402005C1

Изобретение относится к экспериментальной аэродинамике и предназначено для определения характеристик аэродинамического демпфирования моделей самолетов с винтовыми движителями в аэродинамических трубах.

Известен "Способ определения простых вращательных производных на колеблющихся моделях в аэродинамических трубах и устройство для осуществления способа" (см. авт.св. №130351, кл. G01М 9/00, 1969 год). Определение демпфирующих свойств моделей по этому способу осуществляется методом "работ", основанному на равенстве изменения кинетической энергии вращающегося маховика за оборот и работой аэродинамических сил и сил трения в узлах вращения экспериментальной установки за период колебаний модели. Кинематическая схема устройства, реализующая этот способ, представляет собой механизм, состоящий из модели, шарнирно закрепленной на поддерживающих устройствах и соединенной тягой через эксцентрик с маховиком, закрепленным на платформе. Величина комплексов коэффициентов аэродинамических производных, характеризующих моменты демпфирования модели, определяется по разности приращения угловой скорости вращения маховика в потоке Δω и без него Δω0. Эта разность характеризует изменение кинетической энергии маховика за один оборот под воздействием аэродинамического демпфирования модели. При проведении эксперимента модель с помощью поддерживающих устройств крепится на платформе, привод раскручивает маховик до заданной скорости вращения ωmax и после его отключения измеряются среднее значение угловой скорости вращения маховика и ее приращение за оборот. Реализация этого способа описана также:

- в статье: B.C.Быков, Ю.А.Прудников. Экспериментальное определение вращательных производных методом свободных колебаний с постоянной амплитудой и изменяющейся во времени частотой // Труды ЦАГИ, вып.854, 1962 г.;

- в книге: С.М.Белоцерковский, Б.К.Скрипач, В.Г.Табачников. Крыло в нестационарном потоке газа. М. Наука, 1971.

Недостатком данного способа и устройства для его осуществления является отсутствие возможности определения характеристик демпфирования моделей с работающими воздушными винтами. Это снижает достоверность оценки динамических свойств самолета на околокритических режимах обтекания вследствие несоответствия нагрузок, обусловленных воздействием струи работающего винта на несущие элементы модели в аэродинамической трубе и самолета в полете.

Методика весовых испытаний при установившемся обтекании моделей самолетов с работающими воздушными винтами в аэродинамической трубе приведена в статье: С.Г.Деришев, Ю.А.Рогозин, А.В.Сергеев, В.Л.Чемезов. Техника и методика испытаний моделей с работающими воздушными винтами в аэродинамической трубе Т-203 // Методы аэрофизических исследований. Академия наук СССР. Сибирское отделение. Институт теоретической и прикладной механики. 1990. Разработанная методика базируется на том, что электродвигатель с установленным на его ось воздушным винтом не связан жестко с моделью, а с помощью специального поддерживающего устройства устанавливается с зазором относительно модели, подвешенной на аэродинамических весах.

Недостатком данной методики является отсутствие возможности определения нестационарных аэродинамических характеристик, в том числе характеристик демпфирования, моделей самолетов с работающими винтовыми движителями.

Наиболее близким по технической сущности к заявляемому изобретению является "Способ определения характеристик аэродинамического демпфирования модели самолета с винтовым движителем" (см. патент №2344397, кл. G01M 9/00, 2007 год).

Определение характеристик демпфирования модели по этому способу осуществляется методом "работ" (смотри выше), основанному на равенстве изменения кинетической энергии вращающегося маховика за оборот и работой аэродинамических сил и сил трения в узлах вращения экспериментальной установки за период колебаний модели. Испытания ведутся в режиме колебаний модели с постоянной амплитудой и изменяющейся по времени частотой. Для моделирования работы силовой установки в модель устанавливается винтовой движитель, выполненный в виде воздушного винта и пневмотурбины в которую, через поддерживающие устройства, подается сжатый воздух, приводящий винт во вращение.

Недостатком данного способа является необходимость учета влияния гироскопических моментов винта на результаты эксперимента и трудности с организацией вывода отработанного воздуха из турбины таким образом, чтобы он не оказывал существенного влияния на характер обтекания несущих элементов модели и, соответственно, на характеристики ее демпфирования.

Целью настоящего изобретения является устранение указанных недостатков и снижение трудоемкости эксперимента при определении характеристик демпфирования моделей самолетов с работающими винтовыми движителями.

Поставленная цель достигается тем, что движитель, выполненный в виде двигателя, на валу которого закреплен воздушный винт, устанавливается не в модель, а размещается перед ней на платформе α-механизма, обеспечивающего синхронное перемещение модели и винтового движителя таким образом, чтобы их взаимное положение при изменении угла атаки оставалось неизменным.

Изобретение поясняется чертежом, где:

1 - α-механизм;

2 - измерительный маховик;

3 - тяга;

4 - стойка;

5 - модель самолета;

6 - специальная стойка;

7 - двигатель;

8 - воздушный винт;

9 - аэродинамическая труба.

Устройство работает следующим способом: на платформе α-механизма 1 перед моделью 2, шарнирно закрепленной на стойке 3 и соединенной тягой 4 с маховиком 5, устанавливается специальная стойка 6 с винтовым движителем, выполненным в виде двигателя 7, на валу которого закреплен воздушный винт 8. При этом движитель, размещаемый относительно модели, на платформе α-механизма, установлен таким образом, чтобы между моделью и вращающимся винтом был зазор δ≤20 мм, обеспечивающий отсутствие их касания, а амплитуда колебаний модели устанавливается в диапазоне значений ΘО=2…3°, при которых несущие элементы модели не выходят за границы струи от винта.

Определение характеристик аэродинамического демпфирования модели производится, как и по способу-прототипу, в режиме ее колебаний с постоянной амплитудой и изменяющейся по времени частотой. Перед началом эксперимента в рабочей части аэродинамической трубы 9 монтируется оборудование по схеме, приведенной на фиг.1. Затем двигатель 7 приводит воздушный винт 8 во вращение со скоростью, требуемой для моделирования работы силовой установки, и в присутствии воздушного потока (V≠0) маховик 5 разгоняется до заданной скорости вращения ωmax, и после отключения привода измеряются средняя скорость вращения маховика ωср и ее приращение за оборот Δω. Затем, уже в отсутствие воздушного потока (V=0) и при неработающем воздушном движителе, маховик вновь разгоняется и после отключения привода вновь производятся измерения средней скорости вращения маховика ωср и ее приращение за оборот Δω0.

Все измерения угловых скоростей вращения маховика проводятся на базе n=10…12 периодов его вращения в диапазоне приведенных частот колебаний модели, соответствующих натурным условиям полета самолета, а время периода определяется как среднее арифметическое за n оборотов, т.е.

Рабочая формула для подсчета моментов демпфирования модели имеет вид:

где A - комплекс коэффициентов аэродинамических производных, характеризующий демпфирование соответствующей формы колебаний модели и представляемый в виде:

при колебании по тангажу

при колебании по крену

при колебании по рысканию

ωcp - осредненная за n оборотов скорость вращения маховика;

Δω - приращение скорости вращения маховика за один оборот в потоке (V≠), определяющее общую потерю кинетической энергии маховика;

Δω0 - приращение скорости вращения маховика за один оборот без потока (V=0), определяющее потерю кинетической энергии маховика, затрачиваемую на преодоление сил трения в узлах вращения.

- скоростной напор потока в аэродинамической трубе;

S, ba, L - характерные площадь и линейные размеры модели;

Θ0 - амплитуда колебаний модели;

Imax - момент инерции маховика.

Похожие патенты RU2402005C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ ДЕМПФИРУЮЩИХ СВОЙСТВ МОДЕЛЕЙ САМОЛЕТОВ С ВИНТОВЫМИ ДВИЖИТЕЛЯМИ 2007
  • Караваев Эдуард Александрович
  • Зайцев Валерий Юрьевич
RU2344397C2
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТОВ АЭРОДИНАМИЧЕСКИХ СИЛ И МОМЕНТОВ ПРИ УСТАНОВИВШЕМСЯ ВРАЩЕНИИ МОДЕЛИ ЛЕТАТЕЛЬНОГО АППАРАТА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2011
  • Виноградов Юрий Александрович
  • Жук Анатолий Николаевич
  • Колинько Константин Анатольевич
  • Храбров Александр Николаевич
  • Гоман Михаил Гиршевич
RU2477460C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ОБНАРУЖЕНИЯ ВИХРЕВОГО ОБРАЗОВАНИЯ НАД (ПЕРЕД) ВИНТОМ ЛЕТАТЕЛЬНОГО АППАРАТА (ВАРИАНТЫ) 2005
  • Пашуков Евгений Борисович
RU2300089C2
САМОЛЕТ 1992
  • Лавренов Александр Николаевич
RU2015063C1
Установка для замера малых демпфирующих моментов при испытаниях моделей в аэродинамических трубах 1959
  • Быков В.С.
  • Комашинский Б.А.
SU128179A1
УЧЕБНЫЙ САМОЛЕТ 2014
  • Демченко Олег Фёдорович
  • Попович Константин Фёдорович
  • Драч Дмитрий Калистратович
  • Подобедов Владимир Александрович
  • Матросов Александр Анатольевич
  • Соловей Сергей Львович
RU2572507C1
ТУРБОВИНТОВАЯ СИЛОВАЯ УСТАНОВКА РАЗНЕСЕННОЙ ВИНТОВОЙ СХЕМЫ С ПЕРЕКЛЮЧАЮЩИМИ РЕАКТИВНЫМИ И ВИНТОВЫМИ ТИПАМИ ТЯГ ВОЗДУШНОГО ЛЕТАТЕЛЬНОГО АППАРАТА 2013
  • Юркин Владимир Ильич
RU2529737C1
МАХОВОЙ ДИАФРАГМЕННЫЙ ДВИЖИТЕЛЬ (ЕГО ВАРИАНТЫ) И МАХОВОЙ САМОЛЕТ НА ЕГО ОСНОВЕ 1996
  • Горобцов В.М.
RU2123455C1
СПОСОБ ДЛЯ ВОССТАНОВЛЕНИЯ ПОДЪЕМНОЙ СИЛЫ ВОЗДУШНОГО ВИНТА (ВАРИАНТЫ) И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ (ВАРИАНТЫ). 2004
  • Пашуков Евгений Борисович
RU2297365C2
СПОСОБ КОМПЛЕКСНОГО ПОВЫШЕНИЯ АЭРОДИНАМИЧЕСКИХ И ТРАНСПОРТНЫХ ХАРАКТЕРИСТИК, ЭКРАНОПЛАН ДЛЯ ОСУЩЕСТВЛЕНИЯ УКАЗАННОГО СПОСОБА (ВАРИАНТЫ) И СПОСОБ ВЫПОЛНЕНИЯ ПОЛЕТА 2010
  • Новиков-Копп Иван
RU2539443C2

Реферат патента 2010 года СПОСОБ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК АЭРОДИНАМИЧЕСКОГО ДЕМПФИРОВАНИЯ МОДЕЛЕЙ САМОЛЕТОВ С ВИНТОВЫМИ ДВИЖИТЕЛЯМИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Группа изобретений относится к экспериментальной аэродинамике и предназначена для определения в аэродинамических трубах характеристик аэродинамического демпфирования моделей самолетов с винтовыми движителями. Способ заключается в том, что винтовой движитель, выполненный в виде двигателя, на валу которого закреплен воздушный винт, устанавливается не в модель, а размещается перед ней на платформе α-механизма, обеспечивающего синхронное перемещение модели и винтового движителя таким образом, чтобы их взаимное положение при изменении угла атаки оставалось неизменным. Определение характеристик аэродинамического демпфирования модели осуществляется по методу "работ", основанному на равенстве изменения кинетической энергии вращающегося маховика за оборот и работой аэродинамических сил и сил трения в узлах вращения экспериментальной установки за период колебаний модели. Испытания ведутся в режиме колебаний модели с постоянной амплитудой и изменяющейся по времени частотой. В устройстве модель и винтовой движитель размещаются на платформе α-механизма, обеспечивающего синхронное перемещение модели и винтового движителя, при котором их взаимное положение при изменении угла атаки оставалось неизменным. Технический результат заключается в повышении точности измерений, снижении трудоемкости. 2 н. и 2 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 402 005 C1

1. Способ определения характеристик аэродинамического демпфирования модели самолета с винтовым движителем, основанный на задании вращения маховику и колебаний механически связанной с ним модели, установленной в потоке аэродинамической трубы, и регистрацией параметров вращения маховика, отличающийся тем, что винтовой движитель, не связанный жестко с моделью и выполненный в виде двигателя, на валу которого закреплен воздушный винт, устанавливается перед моделью, затем воздушный винт приводится во вращение со скоростью, необходимой для моделирования работы силовой установки и в присутствии воздушного потока маховик разгоняется до заданной скорости вращения и после отключения привода измеряются средняя скорость вращения маховика и ее приращение за оборот, затем, уже в отсутствии воздушного потока, маховик вновь разгоняется до заданной скорости вращения и после отключения привода также производятся измерения средней скорости вращения маховика и ее приращение за оборот, а затем, по разности приращений средней скорости вращения маховика за оборот, полученными в присутствии и отсутствии воздушного потока, определяются характеристики аэродинамического демпфирования модели самолета.

2. Устройство для определения характеристик аэродинамического демпфирования модели самолета с винтовым движителем, установленным в потоке аэродинамической трубы, отличающееся тем, что модель самолета и винтовой движитель при помощи стоек размещены на платформе α-механизма, обеспечивающего синхронное перемещение модели и винтового движителя, при котором их взаимное положение при изменении угла атаки остается неизменным, а винтовой движитель не связан жестко с моделью самолета, при этом модель самолета закреплена на стойке шарнирно и соединена тягой с маховиком, параметры вращения которого регистрируются, а винтовой движитель выполнен в виде двигателя, на валу которого закреплен воздушный винт, и установлен на стойке платформы α-механизма перед моделью самолета с зазором, обеспечивающим отсутствие ее касания вращающимся винтом.

3. Устройство по п.2, отличающееся тем, что величина зазора между моделью самолета и воздушным винтом составляет δ<20 мм.

4. Устройство по п.2, отличающееся тем, что модель самолета установлена так, что амплитуда ее колебаний составляет Θ0=2…3°, при которой несущие элементы модели не выходят за границы струи от воздушного винта.

Документы, цитированные в отчете о поиске Патент 2010 года RU2402005C1

СПОСОБ ОПРЕДЕЛЕНИЯ ДЕМПФИРУЮЩИХ СВОЙСТВ МОДЕЛЕЙ САМОЛЕТОВ С ВИНТОВЫМИ ДВИЖИТЕЛЯМИ 2007
  • Караваев Эдуард Александрович
  • Зайцев Валерий Юрьевич
RU2344397C2
0
SU130351A1
ПРИБОР ДЛЯ ЗАМЕРА ВРАЩАТЕЛЬНЫХ ПРОИЗВОДНЫХ СЛАБОДЕМПФИРУЮЩИХ ТЕЛ 0
SU268715A1
SU 1828694 A3 20.02.1996
Быков В.С., Прудников Ю.А
Экспериментальное определение вращательных производных методом свободных колебаний с постоянной амплитудой и изменяющейся во времени частотой
Труды ЦАГИ, вып.854, 1962 г.

RU 2 402 005 C1

Авторы

Караваев Эдуард Александрович

Даты

2010-10-20Публикация

2009-03-11Подача