СПОСОБ УСТАНОВКИ ЛОПАСТЕЙ ОПЕРЕНИЯ СТАБИЛИЗИРУЮЩЕГО УСТРОЙСТВА РАКЕТЫ Российский патент 2010 года по МПК F42B10/14 

Описание патента на изобретение RU2403530C1

Предлагаемое изобретение относится к области ракетной техники.

Известен способ установки лопастей стабилизатора под заданный рабочий угол наклона (патент России №2194940 от 20.12.2002 г.), в котором установку заданного рабочего угла наклона каждой лопасти осуществляют по перепаду реперных точек, попарно лежащих в n-количестве i-сечений, параллельных продольной оси лопасти стабилизатора. При этом сначала вращением эксцентрикового пальца устанавливают заданный рабочий угол наклона лопасти по перепаду реперных точек, лежащих в центре давления аэродинамических сил, действующих на лопасть, в сечении, делящем лопасть пополам, затем замеряют перепады реперных точек каждого из i-сечений, расположенных по обе стороны от центра давления аэродинамических сил. Вычисление значения фактического рабочего угла наклона лопасти осуществляют по формуле

где сумма перепадов реперных точек, попарно лежащих в n-количестве i-сечений, параллельных продольной оси лопасти;

- частная производная коэффициента момента крена i-сечения по углу наклона;

- частная производная коэффициента момента крена всей лопасти по углу наклона;

δi - фактический угол наклона i-сечения, рассчитанный по замеренному перепаду реперных точек.

Если фактический расчетный угол наклона лопасти не соответствует заданному, то, вращая соединительный эксцентриковый палец, добиваются изменения перепада реперных точек, лежащих в центре давления аэродинамических сил, на величину несоответствия. Сущность данного способа заключается в том, что обеспечивается точность установки заданного рабочего угла наклона лопастей стабилизатора в заданных допусках с учетом неплоскостности самой лопасти. Установка заданного рабочего угла наклона лопастей стабилизатора в заданных допусках с учетом неплоскостности самой лопасти обеспечивает выбор заданного режима вращения ракеты из условия необходимости несовпадения частоты вращения и собственной аэродинамической частоты ракеты.

Недостатком данного способа является то, что он не применим для стабилизирующего устройства ракеты с жестко закрепленными лопастями оперения, имеющего существенные преимущества по сравнению со стабилизирующим устройством, содержащим соединительные эксцентриковые пальцы, поворачивая которые выставляют каждую лопасть под заданным рабочим углом наклона к продольной оси ракеты (патент России №2103651 от 27.01.1998 г.). К таким преимуществам можно отнести большую прочность, простоту конструкции, меньшие габариты.

Поэтому задачей предлагаемого изобретения является обеспечение заданного режима вращения ракеты из условия необходимости несовпадения частоты вращения и собственной аэродинамической частоты ракеты.

Решение указанной задачи достигается тем, что в способе установки лопастей оперения стабилизирующего устройства ракеты, включающем сборку оперения с жестко закрепленными лопастями на корпусе под заданным рабочим углом наклона лопасти, измерение и расчет фактического рабочего угла наклона каждой установленной лопасти, несоответствие фактического и заданного рабочих углов наклона лопастей оперения стабилизирующего устройства ракеты компенсируется за счет выполнения на поверхности каждой лопасти нивелировочной площадки с заданной шириной, определяющий линейный размер которой вычисляют по формуле

где δном - заданный рабочий угол наклона лопасти;

- момент крена всей лопасти без нивелировочной площадки;

- момент крена всей лопасти с нивелировочной площадкой максимально допустимого линейного размера L=B·ctg(δc);

B -толщина лопасти;

δс - угол наклона нивелировочной площадки, назначенный из условия безотрывного обтекания в диапазоне от 0 до 10°;

- фактический рабочий угол наклона лопасти, рассчитанный до выполнения нивелировочных площадок;

- сумма перепадов реперных точек, попарно лежащих в n-количестве i-сечений, параллельных продольной оси лопасти;

- частная производная коэффициента момента крена i-сечения по углу наклона;

- частная производная коэффициента момента крена всей лопасти по углу наклона;

δi - фактический угол наклона i-ечения, рассчитанный по замеренному перепаду реперных точек.

Предлагаемый способ заключается в следующем. Производится сборка оперения с жестко закрепленными лопастями на корпусе под заданным рабочим углом наклона лопасти, измерение и расчет фактического рабочего угла наклона каждой установленной лопасти. Несоответствие фактического и заданного рабочих углов наклона лопастей оперения стабилизирующего устройства ракеты компенсируется за счет выполнения на поверхности каждой лопасти нивелировочной площадки с заранее определенными размерами. Выполнение нивелировочных площадок в виде скосов осуществляют фрезерованием нивелировочной площадки на поверхности каждой лопасти оперения стабилизирующего устройства ракеты. Установленная под фактическим рабочим углом наклона лопасть оперения стабилизирующего устройства ракеты создает момент крена за счет разности давлений - повышенного на подветренной (нижней) стороне лопасти и пониженного на наветренной (верхней) стороне. Выполнение скоса на задней кромке лопасти приводит к понижению давления на той стороне, на которой он выполнен. Если эта сторона верхняя, то разность давлений уменьшается, и, как следствие, понижается момент крена. Если же сторона нижняя, то разность давлений увеличивается, и, как следствие, возрастает момент крена. Выполнение скоса на передней кромке лопасти приводит к повышению давления на той стороне, на которой он выполнен. Если эта сторона верхняя, то разность давлений увеличивается, и, как следствие, возрастает момент крена. Если же сторона нижняя, то разность давлений уменьшается, и, как следствие, понижается момент крена.

Поэтому, если фактический рабочий угол наклона лопасти, рассчитанный до выполнения нивелировочной площадки, меньше заданного рабочего угла наклона лопасти, нивелировочную площадку выполняют либо на передней кромке верхней стороны лопасти, либо на задней кромке нижней стороны, в противном случае - наоборот.

Сущность предлагаемого изобретения заключается в том, что обеспечивается заданный режим вращения ракеты из условия необходимости несовпадения частоты вращения и собственной аэродинамической частоты ракеты.

Предлагаемое изобретение поясняется графическими материалами. На фиг.1, 2 показан один из вариантов нивелировочной площадки на поверхности лопасти жестко закрепленного оперения стабилизирующего устройства ракеты, применяемый в предлагаемом способе, где: 1 - ракета; 2 - лопасть оперения (крыла), выполненная в виде пластины; 3 - нивелировочная площадка; 4 - лопасть оперения (стабилизатора), выполненная в виде пластины; 5 - стабилизирующее устройство.

Если потребовать, чтобы создаваемый момент крена каждой лопасти, установленной под фактическим углом наклона с учетом возможной неплоскостности самой лопасти, был эквивалентен моменту крена плоской лопасти, установленной под заданным рабочим углом наклона, в общем случае получится равенство

Откуда с учетом того, что и определяется линейный размер нивелировочной площадки для каждой лопасти, равный

Таким образом, после выполнения на поверхности каждой лопасти нивелировочной площадки в виде скосов достигается соответствие моментов крена лопасти, установленной под фактическим углом наклона с учетом возможной неплоскостности самой лопасти, и плоской лопасти, установленной под заданным рабочим углом наклона, что обеспечивает заданный режим вращения ракеты из условия необходимости несовпадения частоты вращения и собственной аэродинамической частоты ракеты.

Геометрия нивелировочной площадки, выполненной в виде скоса, определяется заданными шириной α, углом наклона δс и рассчитанным определяющим линейным размером l. Угол δс назначают из условия безотрывного обтекания в диапазоне от 0 до 10°, ширину скоса α - из конструктивных и технологических возможностей выполнения на поверхности каждой лопасти нивелировочной площадки в диапазоне от 0 до размаха лопасти.

Похожие патенты RU2403530C1

название год авторы номер документа
СПОСОБ УСТАНОВКИ РАБОЧЕГО УГЛА НАКЛОНА ЛОПАСТЕЙ СТАБИЛИЗАТОРА 2001
  • Дудка В.Д.
  • Кузнецов В.М.
  • Максимов Ф.А.
  • Махонин В.В.
RU2194940C2
ВРАЩАЮЩАЯСЯ РАКЕТА 2020
  • Аляжединов Вадим Рашитович
  • Белобрагин Борис Андреевич
  • Трегубов Виктор Иванович
  • Базарный Алексей Николаевич
  • Медведев Владимир Иванович
  • Хлебников Игорь Иванович
  • Захаров Олег Львович
  • Захаров Сергей Олегович
  • Ерохин Владимир Евгеньевич
  • Кузнецов Виталий Васильевич
  • Быконя Игорь Петрович
  • Михайлов Андрей Владимирович
  • Хрыков Виктор Викторович
  • Шатунова Наталья Николаевна
RU2732370C1
ВРАЩАЮЩАЯСЯ УПРАВЛЯЕМАЯ РАКЕТА 2003
  • Афонин А.Г.
  • Большун В.Г.
  • Гришин В.В.
  • Гущин Н.И.
  • Кашин В.М.
  • Рютин В.Б.
RU2241953C1
КИНЕТИЧЕСКАЯ БОЕГОЛОВКА С АЭРОДИНАМИЧЕСКИМ НАВЕДЕНИЕМ 2022
  • Горшков Александр Александрович
RU2825027C2
СПОСОБ ОЦЕНКИ ПОЗИЦИОНИРОВАНИЯ НАВЕСНОГО АГРЕГАТА ОТНОСИТЕЛЬНО ВНЕШНИХ ПОВЕРХНОСТЕЙ ПЛАНЕРА ЛЕТАТЕЛЬНОГО АППАРАТА 2023
  • Ененков Олег Владимирович
  • Шарафайдинов Константин Якубович
RU2818145C1
СПОСОБ УПРАВЛЕНИЯ ЗАКРЫЛКАМИ КРЫЛЬЕВ И ГОРИЗОНТАЛЬНЫМ ОПЕРЕНИЕМ ГИБРИДНОГО ВЕРТОЛЕТА 2013
  • Эглен Поль
RU2551830C2
БЕСПИЛОТНЫЙ САМОЛЕТ-ВЕРТОЛЕТ-РАКЕТОНОСЕЦ И СПОСОБ ЕГО ПРИМЕНЕНИЯ 2018
  • Дуров Дмитрий Сергеевич
RU2699514C1
ДВУХСТУПЕНЧАТАЯ ВРАЩАЮЩАЯСЯ ПО КРЕНУ РАКЕТА 1996
  • Жуков В.П.
  • Кузнецов В.М.
  • Хрипунов Л.А.
RU2110755C1
БОЕВАЯ ЧАСТЬ И УСТРОЙСТВО ДЛЯ ЕЕ ДОСТАВКИ К ЦЕЛИ 2006
  • Бондарчук Виктор Савельевич
  • Зинин Игорь Николаевич
  • Лаврентьев Эдуард Давыдович
  • Ланг Виктор Фридрихович
  • Ренсков Артур Петрович
  • Рыжков Геннадий Федорович
RU2333454C2
СПОСОБ ЗАПУСКА ДВУХСТУПЕНЧАТОЙ УПРАВЛЯЕМОЙ РАКЕТЫ С ВОЗДУШНОГО НОСИТЕЛЯ 2006
  • Шипунов Аркадий Георгиевич
  • Морозов Владимир Иванович
  • Голомидов Борис Александрович
  • Максимов Федор Александрович
  • Шестакова Любовь Александровна
RU2321825C2

Иллюстрации к изобретению RU 2 403 530 C1

Реферат патента 2010 года СПОСОБ УСТАНОВКИ ЛОПАСТЕЙ ОПЕРЕНИЯ СТАБИЛИЗИРУЮЩЕГО УСТРОЙСТВА РАКЕТЫ

Изобретение относится к области ракетной техники. Способ установки лопастей оперения стабилизирующего устройства ракеты включает в себя сборку оперения с жестко закрепленными лопастями на корпусе под заданным рабочим углом наклона лопасти, измерение и расчет фактического рабочего угла наклона каждой установленной лопасти. Несоответствие фактического и заданного рабочих углов наклона лопастей оперения стабилизирующего устройства ракеты компенсируется за счет выполнения на поверхности каждой лопасти нивелировочной площадки с заданной шириной, определяющий линейный размер которой вычисляют по заданной формуле. Обеспечивается заданный режим вращения ракеты. 1 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 403 530 C1

1. Способ установки лопастей оперения стабилизирующего устройства ракеты, включающий сборку оперения с жестко закрепленными лопастями на корпусе под заданным рабочим углом наклона лопасти, измерение и расчет фактического рабочего угла наклона каждой установленной лопасти, отличающийся тем, что на поверхности каждой лопасти выполняют нивелировочную площадку с шириной, заданной из условия компенсации несоответствия фактического и заданного рабочих углов наклона лопасти.

2. Способ по п.1, отличающийся тем, что определяющий линейный размер нивелировочной площадки для каждой лопасти вычисляют по формуле
, где
δном - заданный рабочий угол наклона лопасти;
- момент крена всей лопасти без нивелировочной площадки;
- момент крена всей лопасти с нивелировочной площадкой максимально допустимого линейного размера L=B·ctg(δc);
В - толщина лопасти;
δc - угол наклона нивелировочной площадки, назначенный из условия безотрывного обтекания в диапазоне от 0 до 10°;
- фактический рабочий угол наклона лопасти, рассчитанный до выполнения нивелировочных площадок;
- сумма перепадов реперных точек, попарно лежащих в n-количестве i-сечений, параллельных продольной оси лопасти;
- частная производная коэффициента момента крена i-сечения по углу наклона;
- частная производная коэффициента момента крена всей лопасти по углу наклона;
δi - фактический угол наклона i-сечения, рассчитанный по замеренному перепаду реперных точек.

Документы, цитированные в отчете о поиске Патент 2010 года RU2403530C1

СПОСОБ УСТАНОВКИ РАБОЧЕГО УГЛА НАКЛОНА ЛОПАСТЕЙ СТАБИЛИЗАТОРА 2001
  • Дудка В.Д.
  • Кузнецов В.М.
  • Максимов Ф.А.
  • Махонин В.В.
RU2194940C2
РАКЕТА 1995
  • Кузнецов В.М.
  • Феруленков А.В.
  • Энтин А.П.
  • Зверев В.И.
  • Махонин В.В.
RU2103651C1
US 6073879 А, 13.06.2000.

RU 2 403 530 C1

Авторы

Морозов Владимир Иванович

Голомидов Борис Александрович

Симаков Сергей Юрьевич

Петров Валерий Борисович

Даты

2010-11-10Публикация

2009-08-27Подача