СПОСОБ СОЗДАНИЯ НАНОЧАСТИЦ В БИОЦЕМЕНТЕ-ГИДРОКСИЛАПАТИТЕ Российский патент 2010 года по МПК A61L27/12 B82B3/00 

Описание патента на изобретение RU2404818C1

Изобретение относится к области медицины. Гидроксилапатит с частицами наноразмеров может быть использован в качестве костезамещающего материала при осуществлении различного рода операций, связанных с поломкой или утратой больным кости или ее частей.

Наиболее близким к заявляемому способу является способ создания в гидроксилапатите частиц наноразмеров [1]. Недостатками прототипа являются: во-первых, использование микроволнового излучения, которое позволяет получить частицы со средним размером 220 нм, не являющиеся наночастицами, во-вторых, необходимость термообработки для получения частиц наноразмеров, в-третьих, получение наночастиц в исходном материале, а не в готовых изделиях.

Заявляемое изобретение направлено на создание в готовых изделиях биоцемента-гидроксилапатита частиц наноразмеров без применения термообработки.

Указанный результат достигается тем, что готовые изделия при комнатной температуре подвергают воздействию рентгеновского излучения с поглощенной дозой излучения, равной 16,1±0,5 кГр, и последующему двухмесячному старению при комнатной температуре.

Отличительными признаками заявляемого изобретения являются:

- облучение готовых изделий, выполненных из гидроксилапатита;

- облучение готовых изделий при комнатной температуре;

- использование рентгеновского излучения;

- значение поглощенной дозы излучения, равное 16,1±0,5 кГр;

- использование двухмесячного старения изделия при комнатной температуре.

Экспериментально установлено, что средние размеры блоков (кристаллитов) гидроксилапатита превышают 100 нм, если рентгеновским измерением подвергается образец биоцемента-гидроксилапатита, находящийся в исходном состоянии.

Экспериментально установлено, что средние размеры блоков гидроксилапатита составляют менее 100 нм, если рентгеновские измерения проводятся после двухмесячного старения - вылеживания образца в течение двух месяцев при комнатной температуре.

Сущность заявляемого изобретения поясняется нижеследующим описанием.

Средние размеры блоков (кристаллитов)) определялись методом рентгеновской дифрактометрии [2] при помощи автоматизированного рентгеновского дифрактометра марки ДРОН-4. Использовалось излучение СоKα, монохроматизированное отражением от пирографита на дифрагированном пучке. Применялось шаговое сканирование: шаг 0,1 угл. град., время регистрации τ в точке 10 с, интервал 30-100 (в брегговских углах 2θ). Для определения средних размеров блоков использовались программы OUTSET и PROFILE [3] и аналитический метод [4].

Программа PROFILE основана на мозаичной модели кристалла [2]. Расчет размеров мозаичных блоков связан с некоторыми ограничениями, обусловленными принципиальными возможностями метода аппроксимации [2]. Так, этот метод не способен определить размер блоков мозаики, если он превышает 250 нм [5].

Проверка достижения заявленного технического результата осуществлялась следующим образом. Из гидроксилапатита Са5[(РO4)3ОН] [6] изготавливались образцы, имеющие форму цилиндров ⌀ 9 мм и высотой ≈9 мм. Один из образцов, находящийся в исходном состоянии, исследовался методом рентгеновской дифрактометрии дважды с временным интервалом, равном двум месяцам.

В таблице 1 приведены результаты экспериментов.

Таблица 1. Средние размеры блоков мозаики в образце гидроксилапатита, подвергнутом воздействию рентгеновского излучения Dпогл.X-Rays, кГр № поверхности D, нм Метод расчета PROFILE [3] Аналитический метод [4] 16,1±0,5 1 227±59 144,2±63,4 16,1±0,5 1 110±12 72,9±13,7 16,1±0,5 2 75±20 51,2±10,7

Примечание. Второе и третье измерения на обеих поверхностях образца проведены через два месяца после первого измерения.

Из таблице 1 очевидно, что значения средних размеров блоков (кристаллитов) D в образце, находящемся в исходном состоянии, превышают 100 нм, однако после двухмесячного старения образца эти значения, определяемые на обеих плоских поверхностях его, составляют менее 100 нм. Согласно общепринятому в научной литературе определению [7] к наночастицам относятся частицы, размер которых не превышает 100 нм. Таким образом, после двухмесячного старения в образце гидроксилапатита образуются наночастицы.

Заметим, что при анализе результатов, помещенных в таблице 1, мы пользуемся данными, полученными при помощи метода [4], а не метода [3], поскольку метод [4] более адекватно отражает реальность [4].

Образец гидроксилапатита после старения обладает уникальными механическими характеристиками: модуль упругости уменьшается в 5,3 раза, средняя деформация сжатия при максимальном механическом напряжении возрастает почти в 2,3 раза, предельная деформация сжатия - ≈ в 1,96 раза по сравнению с образцами, находящимися в исходном состоянии.

Источники информации

1. Заявка США US 2005/226939 А1 от 13.10.2005. INt.Cl7 A61E 5/055, A61K 33/42; US С1 424/602, 423/308 “Production of nano-sized hydroxyapatite particles” Заявитель National University of Singapore. (Прототип).

2. Горелик С.С, Расторгуев Л.Н., Скаков Ю.А. Рентгенографический и электронно-оптический анализ. Изд. 4-е. - М.: МИСиС, 2002. - 360 с.

3. Шелехов Е.В., Свиридова Т.А. Программы для рентгеновского анализа поликристаллов // Металловедение и термическая обработка металлов. - 2000. - № 8. - С.16-19.

4. Коршунов А.Б. Аналитический метод определения параметров тонкой кристаллической структуры по уширению рентгеновских линий // Заводская лаборатория. Диагностика материалов. - 2004. - Т.70, № 2. - С.27-32.

5. Кристаллография, рентгенография и электронная микроскопия / Я.С.Уманский, Ю.А.Скаков, А.Н.Иванов, Л.Н.Расторгуев. - М.: Металлургия, 1982. - 632 с.

6. Получение гидроксилапатита гидролизом α-Ca3(PO4)2 / Синицына О.В., Вересов А.Г., Ковалева Е.С. и др. // Известия Академии Наук. Серия химическая, 2005, № 1. - С.78-85.

7. Гуткин М.Ю., Овидько И.А. Предел текучести и пластическая деформация нанокристаллических материалов // Успехи механики. - 2003. - № 1. - С.68-125.

Похожие патенты RU2404818C1

название год авторы номер документа
СПОСОБ СОЗДАНИЯ НАНОЧАСТИЦ В БИОЦЕМЕНТЕ - ГИДРОКСИЛАПАТИТЕ 2009
  • Третьяков Юрий Дмитриевич
  • Кузнецов Владимир Николаевич
  • Коршунов Анатолий Борисович
  • Путляев Валерий Иванович
  • Голубцов Итэн Вячеславович
  • Иванов Александр Николаевич
  • Ковальков Валерий Константинович
  • Агахи Камилла Абдул Гусейн Кызы
  • Вересов Александр Генрихович
  • Голубев Владимир Андреевич
RU2409392C2
НАНОБИОЦЕМЕНТ И СПОСОБ ЕГО ПОЛУЧЕНИЯ В ГОТОВЫХ ИЗДЕЛИЯХ ИЗ ГИДРОКСИЛАПАТИТА 2009
  • Третьяков Юрий Дмитриевич
  • Кузнецов Владимир Николаевич
  • Коршунов Анатолий Борисович
  • Путляев Валерий Иванович
  • Голубцов Итэн Вячеславович
  • Иванов Александр Николаевич
  • Ковальков Валерий Константинович
  • Агахи Камилла Абдул Гусейн Кызы
  • Вересов Александр Генрихович
  • Голубев Владимир Андреевич
RU2409393C2
СПОСОБ ПОЛУЧЕНИЯ НАНОГИДРОКСИАПАТИТА 2015
  • Буланов Евгений Николаевич
  • Князев Александр Владимирович
  • Корокин Виталий Жанович
  • Блохина Алёна Геннадьевна
RU2614772C1
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО ГИДРОКСИЛАПАТИТА 2007
  • Иванов Максим Борисович
  • Волковняк Наталья Николаевна
  • Колобов Юрий Романович
  • Бузов Андрей Анатольевич
  • Чуев Владимир Петрович
RU2342938C1
Способ получения плотной мелкозернистой керамики из композитного нанопорошка на основе оксидов алюминия, церия и циркония, синтезированного модифицированным золь-гель методом 2015
  • Трусова Елена Алексеевна
  • Хрущёва Анастасия Александровна
  • Лысенков Антон Сергеевич
RU2610483C1
ОБЪЕМНЫЙ ТВЕРДЫЙ ЭЛЕКТРОЛИТ ДЛЯ ВЫСОКОТЕМПЕРАТУРНЫХ ЭЛЕКТРОТЕХНИЧЕСКИХ УСТРОЙСТВ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2010
  • Липилин Александр Сергеевич
  • Шкерин Сергей Николаевич
  • Никонов Алексей Викторович
  • Спирин Алексей Викторович
  • Иванов Виктор Владимирович
  • Паранин Сергей Николаевич
  • Хрустов Владимир Рудольфович
RU2422952C1
Способ получения платиносодержащих катализаторов для топливных элементов и электролизеров 2022
  • Паперж Кирилл Олегович
  • Гутерман Владимир Ефимович
  • Алексеенко Анастасия Анатольевна
RU2775979C1
СПОСОБ ПРИГОТОВЛЕНИЯ ПЛАТИНО-РУТЕНИЕВЫХ ЭЛЕКТРОКАТАЛИЗАТОРОВ 2010
  • Симонов Павел Анатольевич
  • Романенко Анатолий Владимирович
  • Симонов Александр Николаевич
  • Собянин Владимир Александрович
  • Пармон Валентин Николаевич
RU2446009C1
СПОСОБ ПОЛУЧЕНИЯ БИМЕТАЛЛИЧЕСКИХ КАТАЛИЗАТОРОВ С ГРАДИЕНТНОЙ СТРУКТУРОЙ НА ОСНОВЕ ПЛАТИНЫ 2018
  • Алексеенко Анастасия Анатольевна
  • Гутерман Владимир Ефимович
  • Беленов Сергей Валерьевич
  • Новомлинский Иван Николаевич
  • Меньщиков Владислав Сергеевич
RU2677283C1
НЕОРГАНИЧЕСКИЙ РЕЗОРБИРУЕМЫЙ МАТЕРИАЛ ДЛЯ ЗАМЕНЫ КОСТЕЙ 2004
  • Гербер Томас
RU2354408C2

Реферат патента 2010 года СПОСОБ СОЗДАНИЯ НАНОЧАСТИЦ В БИОЦЕМЕНТЕ-ГИДРОКСИЛАПАТИТЕ

Изобретение относится к области медицины. Гидроксилапатит с частицами наноразмеров может быть использован в качестве костезамещающего материала при осуществлении различного рода операций, связанных с поломкой или утратой больным кости или ее частей. Изобретение направлено на создание в готовых изделиях биоцемента-гидроксилапатита частиц наноразмеров без применения термообработки. Указанный результат достигается тем, что готовые изделия при комнатной температуре подвергают воздействию рентгеновского излучения с поглощенной дозой излучения, равной 16,1±0,5 кГр, и последующему двухмесячному старению при комнатной температуре. Результат изобретения - это уменьшение хрупкости костезамещающего материала. 1 табл.

Формула изобретения RU 2 404 818 C1

Способ создания наночастиц в изделии из биоцемента-гидроксилапатита посредством радиационной обработки, заключающийся в том, что изделие при комнатной температуре подвергают воздействию рентгеновского излучения с поглощенной дозой излучения, равной 16,1±0,5 кГр, и последующему двухмесячному старению при комнатной температуре.

Документы, цитированные в отчете о поиске Патент 2010 года RU2404818C1

Способ обработки целлюлозных материалов, с целью тонкого измельчения или переведения в коллоидальный раствор 1923
  • Петров Г.С.
SU2005A1
СИНИЦЫНА О.В
и др
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
ВЕЩЕСТВО ДЛЯ ВОЗМЕЩЕНИЯ ДЕФЕКТОВ КОСТИ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2005
  • Капустин Роман Филиппович
  • Десятниченко Константин Степанович
  • Слесаренко Наталья Анатольевна
  • Торба Александр Иванович
  • Капустин Филипп Романович
RU2303436C1

RU 2 404 818 C1

Авторы

Третьяков Юрий Дмитриевич

Кузнецов Владимир Николаевич

Коршунов Анатолий Борисович

Путляев Валерий Иванович

Голубцов Итэн Вячеславович

Иванов Александр Николаевич

Ковальков Валерий Константинович

Агахи Камилла Абдул Гусейн Кызы

Вересов Александр Генрихович

Голубев Владимир Андреевич

Даты

2010-11-27Публикация

2009-03-30Подача