Изобретение относится к области медицины. Гидроксилапатит с частицами наноразмеров может быть использован в качестве костезамещающего материала при осуществлении различного рода операций, связанных с поломкой или утратой больным кости или ее частей.
Наиболее близким к заявляемому способу является способ создания в гидроксилапатите частиц наноразмеров [1]. Недостатками прототипа являются: во-первых, использование микроволнового излучения, которое позволяет получить частицы со средним размером 220 нм, не являющиеся наночастицами, во-вторых, необходимость термообработки для получения частиц наноразмеров, в-третьих, получение наночастиц в исходном материале, а не в готовых изделиях.
Заявляемое изобретение направлено на создание в готовых изделиях биоцемента-гидроксилапатита частиц наноразмеров без применения термообработки.
Указанный результат достигается тем, что готовые изделия при комнатной температуре подвергают воздействию рентгеновского излучения с поглощенной дозой излучения, равной 16,1±0,5 кГр, и последующему двухмесячному старению при комнатной температуре.
Отличительными признаками заявляемого изобретения являются:
- облучение готовых изделий, выполненных из гидроксилапатита;
- облучение готовых изделий при комнатной температуре;
- использование рентгеновского излучения;
- значение поглощенной дозы излучения, равное 16,1±0,5 кГр;
- использование двухмесячного старения изделия при комнатной температуре.
Экспериментально установлено, что средние размеры блоков (кристаллитов) гидроксилапатита превышают 100 нм, если рентгеновским измерением подвергается образец биоцемента-гидроксилапатита, находящийся в исходном состоянии.
Экспериментально установлено, что средние размеры блоков гидроксилапатита составляют менее 100 нм, если рентгеновские измерения проводятся после двухмесячного старения - вылеживания образца в течение двух месяцев при комнатной температуре.
Сущность заявляемого изобретения поясняется нижеследующим описанием.
Средние размеры блоков (кристаллитов)) определялись методом рентгеновской дифрактометрии [2] при помощи автоматизированного рентгеновского дифрактометра марки ДРОН-4. Использовалось излучение СоKα, монохроматизированное отражением от пирографита на дифрагированном пучке. Применялось шаговое сканирование: шаг 0,1 угл. град., время регистрации τ в точке 10 с, интервал 30-100 (в брегговских углах 2θ). Для определения средних размеров блоков использовались программы OUTSET и PROFILE [3] и аналитический метод [4].
Программа PROFILE основана на мозаичной модели кристалла [2]. Расчет размеров мозаичных блоков связан с некоторыми ограничениями, обусловленными принципиальными возможностями метода аппроксимации [2]. Так, этот метод не способен определить размер блоков мозаики, если он превышает 250 нм [5].
Проверка достижения заявленного технического результата осуществлялась следующим образом. Из гидроксилапатита Са5[(РO4)3ОН] [6] изготавливались образцы, имеющие форму цилиндров ⌀ 9 мм и высотой ≈9 мм. Один из образцов, находящийся в исходном состоянии, исследовался методом рентгеновской дифрактометрии дважды с временным интервалом, равном двум месяцам.
В таблице 1 приведены результаты экспериментов.
Примечание. Второе и третье измерения на обеих поверхностях образца проведены через два месяца после первого измерения.
Из таблице 1 очевидно, что значения средних размеров блоков (кристаллитов) D в образце, находящемся в исходном состоянии, превышают 100 нм, однако после двухмесячного старения образца эти значения, определяемые на обеих плоских поверхностях его, составляют менее 100 нм. Согласно общепринятому в научной литературе определению [7] к наночастицам относятся частицы, размер которых не превышает 100 нм. Таким образом, после двухмесячного старения в образце гидроксилапатита образуются наночастицы.
Заметим, что при анализе результатов, помещенных в таблице 1, мы пользуемся данными, полученными при помощи метода [4], а не метода [3], поскольку метод [4] более адекватно отражает реальность [4].
Образец гидроксилапатита после старения обладает уникальными механическими характеристиками: модуль упругости уменьшается в 5,3 раза, средняя деформация сжатия при максимальном механическом напряжении возрастает почти в 2,3 раза, предельная деформация сжатия - ≈ в 1,96 раза по сравнению с образцами, находящимися в исходном состоянии.
Источники информации
1. Заявка США US 2005/226939 А1 от 13.10.2005. INt.Cl7 A61E 5/055, A61K 33/42; US С1 424/602, 423/308 “Production of nano-sized hydroxyapatite particles” Заявитель National University of Singapore. (Прототип).
2. Горелик С.С, Расторгуев Л.Н., Скаков Ю.А. Рентгенографический и электронно-оптический анализ. Изд. 4-е. - М.: МИСиС, 2002. - 360 с.
3. Шелехов Е.В., Свиридова Т.А. Программы для рентгеновского анализа поликристаллов // Металловедение и термическая обработка металлов. - 2000. - № 8. - С.16-19.
4. Коршунов А.Б. Аналитический метод определения параметров тонкой кристаллической структуры по уширению рентгеновских линий // Заводская лаборатория. Диагностика материалов. - 2004. - Т.70, № 2. - С.27-32.
5. Кристаллография, рентгенография и электронная микроскопия / Я.С.Уманский, Ю.А.Скаков, А.Н.Иванов, Л.Н.Расторгуев. - М.: Металлургия, 1982. - 632 с.
6. Получение гидроксилапатита гидролизом α-Ca3(PO4)2 / Синицына О.В., Вересов А.Г., Ковалева Е.С. и др. // Известия Академии Наук. Серия химическая, 2005, № 1. - С.78-85.
7. Гуткин М.Ю., Овидько И.А. Предел текучести и пластическая деформация нанокристаллических материалов // Успехи механики. - 2003. - № 1. - С.68-125.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ СОЗДАНИЯ НАНОЧАСТИЦ В БИОЦЕМЕНТЕ - ГИДРОКСИЛАПАТИТЕ | 2009 |
|
RU2409392C2 |
НАНОБИОЦЕМЕНТ И СПОСОБ ЕГО ПОЛУЧЕНИЯ В ГОТОВЫХ ИЗДЕЛИЯХ ИЗ ГИДРОКСИЛАПАТИТА | 2009 |
|
RU2409393C2 |
СПОСОБ ПОЛУЧЕНИЯ НАНОГИДРОКСИАПАТИТА | 2015 |
|
RU2614772C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО ГИДРОКСИЛАПАТИТА | 2007 |
|
RU2342938C1 |
Способ получения плотной мелкозернистой керамики из композитного нанопорошка на основе оксидов алюминия, церия и циркония, синтезированного модифицированным золь-гель методом | 2015 |
|
RU2610483C1 |
ОБЪЕМНЫЙ ТВЕРДЫЙ ЭЛЕКТРОЛИТ ДЛЯ ВЫСОКОТЕМПЕРАТУРНЫХ ЭЛЕКТРОТЕХНИЧЕСКИХ УСТРОЙСТВ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2010 |
|
RU2422952C1 |
Способ получения платиносодержащих катализаторов для топливных элементов и электролизеров | 2022 |
|
RU2775979C1 |
СПОСОБ ПРИГОТОВЛЕНИЯ ПЛАТИНО-РУТЕНИЕВЫХ ЭЛЕКТРОКАТАЛИЗАТОРОВ | 2010 |
|
RU2446009C1 |
СПОСОБ ПОЛУЧЕНИЯ БИМЕТАЛЛИЧЕСКИХ КАТАЛИЗАТОРОВ С ГРАДИЕНТНОЙ СТРУКТУРОЙ НА ОСНОВЕ ПЛАТИНЫ | 2018 |
|
RU2677283C1 |
НЕОРГАНИЧЕСКИЙ РЕЗОРБИРУЕМЫЙ МАТЕРИАЛ ДЛЯ ЗАМЕНЫ КОСТЕЙ | 2004 |
|
RU2354408C2 |
Изобретение относится к области медицины. Гидроксилапатит с частицами наноразмеров может быть использован в качестве костезамещающего материала при осуществлении различного рода операций, связанных с поломкой или утратой больным кости или ее частей. Изобретение направлено на создание в готовых изделиях биоцемента-гидроксилапатита частиц наноразмеров без применения термообработки. Указанный результат достигается тем, что готовые изделия при комнатной температуре подвергают воздействию рентгеновского излучения с поглощенной дозой излучения, равной 16,1±0,5 кГр, и последующему двухмесячному старению при комнатной температуре. Результат изобретения - это уменьшение хрупкости костезамещающего материала. 1 табл.
Способ создания наночастиц в изделии из биоцемента-гидроксилапатита посредством радиационной обработки, заключающийся в том, что изделие при комнатной температуре подвергают воздействию рентгеновского излучения с поглощенной дозой излучения, равной 16,1±0,5 кГр, и последующему двухмесячному старению при комнатной температуре.
Способ обработки целлюлозных материалов, с целью тонкого измельчения или переведения в коллоидальный раствор | 1923 |
|
SU2005A1 |
СИНИЦЫНА О.В | |||
и др | |||
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
ВЕЩЕСТВО ДЛЯ ВОЗМЕЩЕНИЯ ДЕФЕКТОВ КОСТИ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2005 |
|
RU2303436C1 |
Авторы
Даты
2010-11-27—Публикация
2009-03-30—Подача