ФЛЮС ДЛЯ СВАРКИ ИЗДЕЛИЙ ИЗ МЕДНО-НИКЕЛЕВЫХ СПЛАВОВ Российский патент 2010 года по МПК B23K35/362 B23K103/12 

Описание патента на изобретение RU2406598C1

Изобретение относится к области сварочного производства и может быть использовано при сварке неплавящимся электродом в среде аргона изделий из медно-никелевых сплавов с содержанием 10-20% никеля типа МНЖМц 11-1,1-0,6 для уменьшения пористости в сварных швах и увеличения глубины проплавления основного металла.

При сварке изделий из медно-никелевых сплавов ввиду особенности их физико-химических свойств (высокой теплопроводности, повышенной склонности к окислению при высоких температурах и к водородной болезни) в сварных соединениях часто образуются дефекты в виде пористости, которые приходится исправлять путем удаления дефектного металла с порами и последующей заварки. Из-за высокой теплопроводности медно-никелевого сплава и невозможности существенно увеличить величину сварочного тока сварные швы приходится выполнять с повышенным количеством проходов, что уменьшает производительность сварки. С увеличением содержания никеля в основном металле повышается склонность у медно-никелевых сплавов к порообразованию и повышается температура их плавления.

Повысить качество металла сварного соединения, увеличить проплавление основного металла и производительность труда при аргонодуговой сварке изделий из медно-никелевых сплавов можно за счет использования активирующих флюсов. Для аргонодуговой сварки медно-никелевых сплавов с содержанием 10-20% никеля такой флюс отсутствует.

Известен флюс для аргонодуговой сварки изделий из алюминиевых бронз при их изготовлении и ремонте (патент №2243073), содержащий следующие компоненты, мас.%:

Хлорид калия 37-51 Хлорид лития 25-29 Хлорид цинка 4-8 Хлорид аммония 4-6 Фторид натрия 8-10 Фторид кальция 8-10

Использование этого флюса при аргонодуговой сварке изделий из алюминиевой бронзы обеспечивает удаление пленки оксида алюминия (Al2O3) с поверхности сварочной ванны и тем самым улучшает качество сварного шва. Однако применение этого флюса при аргонодуговой сварке изделий из медно-никелевых сплавов не обеспечивает хорошее формирование металла шва и увеличение глубины проплавления основного металла.

Известен также флюс для сварки цветных металлов (патент Франции №2237723), содержащий следующие компоненты, мас.%:

Фторид бария 3-7 Фторид кальция 83-92 Фторид алюминия 5-10

Недостатком этого флюса при сварке неплавящимся электродом изделий из медно-никелевых сплавов является недостаточно высокая плотность наплавленного металла и недостаточно хорошее формирование шва.

Наиболее близким к предлагаемому флюсу по составу, принятым за прототип, является флюс по а.с. 348314, содержащий следующие компоненты, мас.%:

Фторид алюминия 34-42 Фторид кальция 58-66

Этот флюс предназначен для сварки и электрошлакового переплава цветных металлов, в частности меди и сплавов на ее основе, с целью повышения качества литого металла, устранения пористости швов и повышения производительности сварки. Однако при аргонодуговой сварке изделий из медно-никелевых сплавов с содержанием 10-20% никеля с применением этого флюса пористость по сравнению со сваркой без флюса уменьшается незначительно. Проплавление металла при аргонодуговой сварке изделий из медно-никелевых сплавов с применением этого флюса недостаточное.

Техническим результатом изобретения является создание флюса для сварки неплавящимся электродом в среде аргона стыков труб из медно-никелевых сплавов с содержанием 10-20% никеля типа МНЖМц 11-1,1-0,6, обеспечивающего уменьшение пористости в сварных швах и увеличение глубины проплавления основного металла.

Технический результат достигается введением во флюс хлорида калия, борного ангидрида и бора аморфного при следующем соотношении компонентов, мас.%:

Фторид алюминия 44-50 Фторид кальция 12-16 Борный ангидрид 10-20 Хлорид калия 10-20 Бор аморфный 8-10

Наличие во флюсе фторида алюминия и фторида кальция приводит к контрагированию столба дуги и повышению анодного падения напряжения, что, в свою очередь, вызывает увеличение глубины проплавления основного металла. Кроме того, фторид кальция интенсивно взаимодействует с окислами и водяным паром, активно удаляет влагу из зоны сварки, благодаря чему защищает металл шва от насыщения кислородом и водородом. Введение во флюс хлорида калия повышает технологические свойства флюса, его жидкотекучесть, растекаемость и смачивающую способность. Введение во флюс борного ангидрида, обладающего повышенной химической активностью и взаимодействующего при повышенных температурах с поверхностью свариваемых кромок, способствует нейтрализации вредного влияния находящихся на них окислов и предупреждает образование пор. Бор является активным раскислителем и нитридообразующим элементом, связывающим кислород и азот в сварочной ванне в тугоплавкие соединения.

Количественное соотношение компонентов, входящих в состав флюса, установлено экспериментально.

Исследования по влиянию флюсов на глубину проплавления проводили путем проплавления аргонодуговым способом неплавящимся электродом на токе 150 A пластин из сплава марки МНЖМц 11-1,1-0,6 толщиной 10 мм на установке КАТ. Линейная скорость проплавления составляла 6 м/ч.

Исследования по влиянию флюсов на порообразование проводили путем сварки стыков пластин из сплава марки МНЖМц 11-1,1-0,6 размером 100×50×5 мм. Сварка стыков пластин выполнялась на токе 120-160 A. Оценку пористости в швах выполняли при радиографическом контроле по бальной системе (балл 3 - количество пор на 100 мм сварного шва: не более 5 шт. при суммарной предельной длине всех допустимых дефектов не более 4,5 мм; балл 2 - не более 8 шт. при суммарной предельной длине всех допустимых дефектов не более 6,0 мм; балл 1 - более 8 шт. или суммарная предельная длина всех допустимых дефектов более 6,0 мм. Качество швов считается удовлетворительным при их оценке баллами 3 и 2.

Было исследовано 6 составов флюса, из них: 5 составов с различным содержанием компонентов предлагаемого флюса, в том числе 2 состава, соответствующих предлагаемому изобретению(№3 и 4), 3 состава с более высоким и более низким содержанием компонентов, чем в предлагаемом флюсе (№1, 2 и 5), 1 состав флюса по прототипу (№6).

Для оценки влияния состава флюса на глубину проплавления основного металла на каждый его состав производили по пять проплавлений пластин. Для оценки влияния состава флюса на качество швов на каждый состав флюса выполняли сварку десяти стыков. Результаты оценки влияния флюсов на пористость и глубину проплавления приведены в таблице.

Таблица Влияние состава флюсов на качество швов и глубину проплавлени основного металла Флюс № флюса Состав флюса, мас.% Из них оценено баллом, шт. Глубина проплавления основного металла, мм AlF3 CaF2 B2O3 KCl B 1 2 3 Предлагае-
мый состав флюса
1 35 16 14 15 20 1 3 6 3,2
2 40 20 10 15 10 - 2 8 3,7 3 44 16 12 18 10 - 1 9 4,2 4 50 12 15 15 8 - 1 9 4,2 5 58 20 5 7 10 - 3 7 3,9 Прототип 6 42 60 - - - 3 4 3 3,1

Из приведенной таблицы видно, что при сварке 10 стыков пластин из медно-никелевого сплава с флюсом по прототипу процент стыков с недопустимыми дефектами составляет 30%. При сварке по предложенному варианту стыки с недопустимыми дефектами отсутствуют, а количество стыков с наименьшим количеством дефектов, оцененных баллом 3, составляет по 9 из 10, а при сварке по прототипу - 3 из 10.

Глубина проплавления при сварке с флюсом по предлагаемому варианту составляет 3,8 мм, а при сварке с флюсом по прототипу - 2,9 мм.

Приведенные в таблице результаты подтверждают правильность технического решения и выбранных интервалов содержания компонентов во флюсе.

Экономический эффект от предложенного изобретения обеспечивается за счет повышения качества швов (отсутствие необходимости вырубки дефектного металла и повторной заварки) и увеличения глубины проплавления основного металла при сварке (увеличения производительности труда при сварке).

Похожие патенты RU2406598C1

название год авторы номер документа
ФЛЮС ДЛЯ АРГОНОДУГОВОЙ СВАРКИ ИЗДЕЛИЙ ИЗ МЕДНО-НИКЕЛЕВЫХ СПЛАВОВ 2008
  • Баранов Александр Владимирович
  • Вайнерман Абрам Ефимович
  • Чернобаев Сергей Петрович
  • Бишоков Руслан Валерьевич
RU2396157C2
ФЛЮС ДЛЯ АРГОНОДУГОВОЙ СВАРКИ ИЗДЕЛИЙ ИЗ МЕДНЫХ СПЛАВОВ 2009
  • Баранов Александр Владимирович
  • Вайнерман Абрам Ефимович
  • Чернобаев Сергей Петрович
  • Бишоков Руслан Валерьевич
RU2406600C1
ФЛЮС ДЛЯ АРГОНОДУГОВОЙ СВАРКИ ИЗДЕЛИЙ ИЗ МЕДИ 2009
  • Баранов Александр Владимирович
  • Вайнерман Абрам Ефимович
  • Чернобаев Сергей Петрович
  • Бишоков Руслан Валерьевич
RU2406599C1
ФЛЮС ДЛЯ АРГОНОДУГОВОЙ СВАРКИ ИЗДЕЛИЙ ИЗ АЛЮМИНИЕВЫХ БРОНЗ ПРИ ИХ ИЗГОТОВЛЕНИИ И РЕМОНТЕ 2003
  • Рыбин В.В.
  • Баранов А.В.
  • Вайнерман А.Е.
  • Андронов Е.В.
  • Чумакова И.В.
RU2243073C2
СПОСОБ ДУГОВОЙ СВАРКИ МЕДИ И МЕДНО-НИКЕЛЕВЫХ СПЛАВОВ СО СТАЛЬЮ 2011
  • Орыщенко Алексей Сергеевич
  • Вайнерман Абрам Ефимович
  • Баранов Александр Владимирович
  • Пичужкин Сергей Александрович
  • Вайнерман Александр Абрамович
RU2470752C1
СОСТАВ СВАРОЧНОЙ ПРОВОЛОКИ 2010
  • Орыщенко Алексей Сергеевич
  • Малышевский Виктор Андреевич
  • Вайнерман Абрам Ефимович
  • Баранов Александр Владимирович
  • Пичужкин Сергей Александрович
  • Веретенников Михаил Михайлович
RU2446929C1
Флюс для дуговой сварки неплавящимся электродом 1986
  • Рябиченко Б.Р.
  • Татаринов В.Р.
  • Харченко В.И.
  • Иус Н.Ф.
SU1445055A1
Способ дуговой наплавки медно-никелевого сплава с содержанием никеля от 40 до 50% на алюминиево-никелевые бронзы 2015
  • Пичужкин Сергей Александрович
  • Чернобаев Сергей Петрович
  • Вайнерман Александр Абрамович
  • Вайнерман Абрам Ефимович
  • Веретенников Михаил Михайлович
RU2610656C2
АКТИВИРУЮЩИЙ ФЛЮС ДЛЯ ДУГОВОЙ СВАРКИ 2005
  • Паршин Сергей Георгиевич
  • Паршин Станислав Сергеевич
RU2289498C1
Способ сварки неплавящимся электродом алюминия и его сплавов 2023
  • Муругов Дмитрий Александрович
  • Савинов Александр Васильевич
  • Чудин Артем Алексеевич
  • Полесский Олег Александрович
  • Красиков Павел Павлович
  • Лысак Владимир Ильич
RU2817683C1

Реферат патента 2010 года ФЛЮС ДЛЯ СВАРКИ ИЗДЕЛИЙ ИЗ МЕДНО-НИКЕЛЕВЫХ СПЛАВОВ

Изобретение может быть использовано при сварке неплавящимся электродом в среде аргона изделий из медно-никелевых сплавов с содержанием 10-20% никеля, в частности, сплавов типа МНЖМц 11-1,1-0,6. Флюс содержит компоненты в следующем соотношении, мас.%: фторид алюминия 44-50, фторид кальция 12-16, хлорид калия 10-20, борный ангидрид 10-20, бор аморфный 8-10. Изобретение обеспечивает повышение качества швов и увеличение глубины проплавления основного металла при сварке. 1 табл.

Формула изобретения RU 2 406 598 C1

Флюс для аргонодуговой сварки изделий из медно-никелевых сплавов с содержанием 10-20% никеля, содержащий фторид алюминия и фторид кальция, отличающийся тем, что он дополнительно содержит хлорид калия, борный ангидрид и бор аморфный при следующем соотношении компонентов, мас.%:
Фторид алюминия 44-50 Фторид кальция 12-16 Борный ангидрид 10-20 Хлорид калия 10-20 Бор аморфный 8-10

Документы, цитированные в отчете о поиске Патент 2010 года RU2406598C1

СВАРКИ И ПЛАВКИ ЦВЕТНЫХ МЕТАЛЛОВ 0
  • С. М. Гуревич, В. Н. Замков, Б. М. Никитин, А. А. Шапкин, В. Ф. Топольский, В. П. Прилуцкий, С. Л. Дыхно, В. А. Воронов,
  • Н. В. Подконай, М. И. Кричевский С. А. Манойло
  • Электрометаллургический Завод Днепроспецсталь А. Н. Кузьмина
  • Институт Электросварки Е. О. Патова
SU348314A1
ФЛЮС ДЛЯ АРГОНОДУГОВОЙ СВАРКИ ИЗДЕЛИЙ ИЗ АЛЮМИНИЕВЫХ БРОНЗ ПРИ ИХ ИЗГОТОВЛЕНИИ И РЕМОНТЕ 2003
  • Рыбин В.В.
  • Баранов А.В.
  • Вайнерман А.Е.
  • Андронов Е.В.
  • Чумакова И.В.
RU2243073C2
Флюс для сварки меди и ее сплавов 1975
  • Босак Леонид Кириллович
  • Илюшенко Валентин Михайлович
  • Гуревич Самуил Мордкович
  • Алексеенко Алексей Павлович
SU538869A1
СПОСОБ НАПЛАВКИ МЕДИ ИЛИ МЕДНЫХ СПЛАВОВ НА ПОДЛОЖКУ ИЗ ВЫСОКОЛЕГИРОВАННЫХ НИКЕЛЕВЫХ СПЛАВОВ 2003
  • Логинов А.Л.
  • Григоркин Н.М.
  • Туманов Л.А.
  • Никонов В.П.
  • Мовчан Ю.В.
  • Шашелова Г.В.
RU2252117C2
СПОСОБ ДОМЕННОЙ ПЛАВКИ 2003
  • Лисин В.С.
  • Скороходов В.Н.
  • Курунов И.Ф.
  • Яриков И.С.
  • Иванов Д.Д.
  • Емельянов В.Л.
  • Титов В.Н.
  • Тихонов Д.Н.
RU2237723C1

RU 2 406 598 C1

Авторы

Баранов Александр Владимирович

Вайнерман Абрам Ефимович

Чернобаев Сергей Петрович

Бишоков Руслан Валерьевич

Даты

2010-12-20Публикация

2009-09-29Подача