СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНОГО ЛИСТОВОГО ПРОКАТА Российский патент 2011 года по МПК B21B1/46 

Описание патента на изобретение RU2410174C1

Изобретение относится к области черной металлургии, а именно к производству горячекатаного листового проката, и может быть использовано на металлургических заводах.

Известен способ получения стали, включающий расплавление в сталеплавильном агрегате металлической шихты, содержащей примеси марганца, хрома, меди и определение в расплаве их содержания, введение в расплав марганца в количестве, рассчитанном по разнице между среднезаданным содержанием его в готовой стали и фактическим содержанием в расплаве, скорректированном на ожидаемый коэффициент усвоения одновременно с кремнием в печь и в ковш, раскисление в ковше алюминием в количестве 0,55-0,11% с окончанием подачи до выпуска 50% расплава, введение в ковш при выпуске 10-20% металла 0,02-0,03% алюминия, затем введение в процессе выпуска 25-40% металла марганца и кремния в отношении (0,3-4,4):1, изменяя его от (3,8-4,4):1 в начале введения, до (0,3-0,9):1 в конце введения, при этом алюминий в количестве 0,03-0,08% вводят равномерно в процессе выпуска 30-50% металла, а количество вводимого в расплав марганца рассчитывают по формуле, проведение усреднительной обработки металла, горячую прокатку с получением листового проката (SU, №1353821 А1, кл. С21С 7/00, опубл. 23.11.1987 г.).

Определить количество выпущенного металла в ковш в известном способе в действующих условиях производства практически невозможно, это не позволяет достаточно точно определить количество вводимых в расплав раскислителей и, как следствие, процент их ввода, что в свою очередь приводит к невозможности получения требуемого содержания марганца в готовой стали и, соответственно, требуемых механических свойств.

Кроме того, введение кремния и марганца в печь также приводит к нестабильному их усвоению во время раскисления металла, которое зависит от многих факторов (содержание углерода в металле перед раскислением, химический состав шлака, его гомогенность и т.д.), и невозможности точного прогнозирования содержания кремния и марганца в металле после предварительного раскисления металла в печи, получения требуемого содержания марганца в готовой стали и, соответственно, требуемых механических свойств.

Известен способ производства горячекатаного листового проката, включающий выплавку металла в сталеплавильном агрегате, его выпуск в ковш, определение химического состава расплава металла и его корректировку путем ввода углерода, добавок марганца, кремния и алюминия и усреднительную обработку металла с использованием газовой продувки, непрерывную разливку, горячую прокатку металла с получением листового проката, при этом углерод в расплав вводят после усреднительной обработки в виде порошковой проволоки с расходом, определяемым из выражения: Рпров=(Стребадс)×Рпл×ρпров/100×ρнапол×0,9, где Рпров - расход порошковой проволоки, кг; Стреб, Садс - содержание углерода в готовой стали и перед усреднительной продувкой, %; Рпл - вес плавки, т; ρпров - удельный вес проволоки, кг/т; ρнапол - удельный вес наполнителя, кг/т; 0,9; 100 - эмпирические коэффициенты, полученные опытным путем, а после горячей прокатки полученный листовой прокат сматывают в рулоны при температуре смотки, минимальное и максимальное значения которой определяют из следующих выражений: Тсм.мин=123,4×Сэкв+0,089×Ткп+400,25; Тсм.макс=-664×Сэкв-0,43×Ткп+1155,6, где Тсм.мин - минимальная температура смотки, °С; Тсм.макс - максимальная температура смотки, °С; Сэкв - углеродный эквивалент; Ткп - температура конца прокатки, °С; 123,4; 0,089; 400,25; 664; 0,43; 1156,6 - эмпирические коэффициенты, полученные опытным путем (RU, №2203962 С2, кл. С21С 7/00, В21В 1/00, опубл. 10.05.2003 г.).

В известном способе в процессе разливки не проводят регламентацию скорости разливки от конкретного химического состава стали, что приводит к получению листового проката с неоднородной структурой и высоким содержанием неметаллических включений, характеризующегося нестабильным уровнем механических свойств по его длине.

Кроме того, сложность определения углеродного эквивалента химического состава стали в условиях действующего производства, необходимость дополнительного времени для проведения расчетов, отсутствие данных в системе расчетов параметров разливки и прокатки металла не обеспечивают получение готового проката со стабильными механическими характеристиками.

Наиболее близким аналогом предлагаемого изобретения является способ производства горячекатаного листового проката из углеродистых и низколегированных сталей, включающий выплавку металла, подачу металла в ковш с введением контролируемого в заданном диапазоне количества марганца и примесей хрома, никеля и меди, разливку металла через промежуточный ковш на машине непрерывного литья заготовок, нагрев заготовки в нагревательных печах, горячую прокатку металла с получением листового проката толщиной 10-50 мм и термообработку, при этом количество марганца, вводимого в ковш, устанавливают по соотношению, мас.%: Mn=Mn3-(0,3·Cr+0,5·Ni+0,7·Cu) при условии, что количество марганца составляет не менее 0,12 мас.%, где Mn3 - среднее заданное количество марганца в стали требуемого состава (RU, №2308492 С2, кл. С21С 5/28, C21D 8/04, опубл. 20.10.2007 г.).

Известный способ не обеспечивает достижения требуемого технического результата по следующим причинам.

Найденные в известном способе технологические приемы внепечной обработки, разливки и прокатки направлены, прежде всего, на получение листового проката с широким диапазоном механических свойств в пределах ГОСТа. При этом широкое поле разброса значений механических свойств (σв, σт) значительно снижает объем металла по группам прочности.

Цикл разливки в известном способе сохраняется постоянным в течение всего процесса, что снижает качество слитка, поскольку не учитываются такие важные технологические параметры, как химический состав разливаемого металла, температура его перегрева и др., что приводит к получению листового проката с нестабильным уровнем механических свойств по его длине, характеризующимся неоднородной структурой и высоким содержанием неметаллических включений.

В основу изобретения поставлена задача усовершенствования способа производства горячекатаного листового проката путем оптимизации технологических параметров, обеспечивающего высокий уровень механических свойств в элементах металлоконструкций мостостроения.

Ожидаемый технический результат - получение однородной мелкодисперсной структуры металла с низким содержанием неметаллических включений, что позволяет стабилизировать уровень механических свойств по длине листового проката.

Технический результат достигается тем, что в способе производства горячекатаного листового проката, включающем выплавку металла, внепечную обработку, разливку металла через промежуточный ковш на машине непрерывного литья заготовок, нагрев заготовки в нагревательных печах, горячую прокатку металла с получением листового проката толщиной 10-50 мм и термообработку, по изобретению разливку металла ведут со скоростью, определяемой из выражения:

V=0,521·(L-0,639)·(2·k/x)2·0,00718·(Tп/к-Tликв)-2,369·[S]-8,36·([Mn]/[S]),

где V - скорость разливки, м/мин;

L - металлургическая длина МНЛЗ, м;

k - коэффициент затвердевания металла;

х - толщина сляба, мм;

Тп/к - температура металла в промежуточном ковше, С;

Тликв - температура ликвидус металла, °С;

Mn, S - содержание марганца и серы в металле перед разливкой, %;

0,521, 0,639, 0,00718, 2,369, 8,36 - эмпирические коэффициенты,

нагрев заготовки осуществляют в течение 5-8 часов, заготовку выдают с температурой 1200-1300°С, а горячую прокатку металла ведут с черновой прокаткой в интервале температур 990-1080°С и чистовой прокаткой в интервале температур 880-970°С.

Разливка металла с регламентированной скоростью в сочетании с режимами горячей прокатки позволяет получить листовой прокат с требуемым пределом текучести, необходимого качества, с минимальным содержанием и размером неметаллических включений, освоить производство проката из низколегированной конструкционной стали для мостостроения.

Процесс получения листового проката из низколегированной конструкционной стали для мостостроения заключается в обеспечении необходимых ее прочностных свойств за счет выбора скорости разливки металла на машине непрерывного литья заготовок, позволяющей получать равномерную по сечению структуру.

Пример. Производство листового проката предлагаемым способом осуществляли следующим образом.

В 450-тонный конвертер заваливали 111 т металлического лома и заливали 297 т жидкого чугуна с температурой 1396°С с содержанием 0,665% Si, 0,417% Mn, 0,023% S и 0,058% Р.

Во время продувки в конвертер присаживали 11,1 т извести, 16,2 т ожелезненного доломита и 0,8 т алюмофлюса. В первый период плавки израсходовали 19689 м3 кислорода, температура металла на повалке составила 1641°С. По окончании второго периода плавки температура металла на повалке составила 1660°С. На повалке была отобрана проба металла и шлака. Химический состав металла, мас.%: С 0,06; Mn 0,070; S 0,023; P 0,008; Cr 0,015; Ni 0,030; Cu 0,041. Химический состав шлака, мас.%: FeO 19,06; CaO 47,42; SiO2 14.35; MnO 2,88; MgO 12,42; Al2O3 1,43; P2O5 0,95, основность 3,31.

Во время выпуска металла в сталеразливочный ковш подавали 4,3 т FeSi75, 2,7 т SiMn18 и 4,7 т ФХ100, а до начала выпуска в сталеразливочный ковш присаживали 1,7 т лома меди и 2,3 т никеля. Продолжительность выпуска составила 6 мин.

После окончания выпуска на поверхность металла присаживали 2,1 т извести и 0,7 т плавикового шпата. Затем металл передавали на участок внепечной обработки стали, где металл с температурой 1580°С подвергался усреднительной продувке на установке усреднительной продувки стали и корректировке химического состава путем введения 0,289 т алюминиевой катанки. После этого на установке вакуумирования стали осуществляли вакуумную обработку в течение 10 мин 30 с с коэффициентом циркуляции 3,22. До начала и после окончания вакуумной обработки содержание водорода составило 3,7 и 2,4 ppm соответственно.

На установке печь-ковш осуществляли доводку металла, поступающего с температурой 1558°С. Для корректировки химического состава на плавку было отдано: 0,188 т FeMn78, 0,4 т FeSi75, 0,298 т науглероживателя и 0,1 т ФХ100. Химический состав металла после внепечной обработки следующий, мас.%: С 0,106; Si 1,01; Mn 0,566; S 0,006; P 0,014; Cr 0,754; Ni 0,575; Cu 0,46, Al 0,051; Ti 0,0197. Металл с температурой 1573°С из сталеразливочного ковша подавали в промежуточный ковш и далее в кристаллизатор криволинейной машины непрерывного литья заготовок.

Для защиты металла от вторичного окисления использовали защитные трубы на участке сталеразливочный ковш - промежуточный ковш и промежуточный ковш - кристаллизатор с подачей аргона во внутреннею полость трубы.

Разливку металла вели в МНЛЗ с металлургической длиной 35,8 м.

Эмпирический коэффициент, характеризующий влияние конструкции МНЛЗ на максимально допустимую для данного типа МНЛЗ скорость вытягивания заготовки, был определен равным 0,639 м. Коэффициент затвердевания металла k равен 28 мм/мин-0,5. Температура металла в промежуточном ковше составляла 1573°С, а температура ликвидус металла 1510°С. Содержание марганца в подготовленном к разливке металле составляло 0,566% по массе, а серы 0,006%. Предполагается, что толщина сляба будет составлять 250 мм.

Исходя из приведенного в формуле изобретения уравнения для расчета скорости разливки

V=k1·(L-0,639)·(2·k/x)2·k2·(Tп/к-Tликв)-k3·[S]-k4·([Mn]/[S]),

где V - скорость разливки, м/мин;

и подставив значения соответствующих коэффициентов

k1 - эмпирический коэффициент, равный 0,521 1/мин2;

k2 - эмпирический коэффициент, равный 0,00718 м/(мин·°С);

k3 - эмпирический коэффициент, равный 2,369 м/(мин·%);

k4 - эмпирический коэффициент, равный 8,36 м/мин,

вычисляем, что разливка должна вестись со скоростью, определяемой из выражения:

V=0,521·(35,8-0,639)·(2·28/250)2-0,00718·(1573-1510)-2,369·0,006-8,36·(0,566/0,006)=0,7 м/мин.

В процессе разливки осуществляли замер температуры металла и корректировку скорости разливки не менее 3-х раз - в начале, середине и конце разливки.

Полученные слябы толщиной 250 мм разрезали на мерные заготовки и подавали на стан 5000 для проведения прокатки и термообработки. Нагрев заготовок осуществляли в нагревательной печи в течение 5 часов 35 минут, при этом заготовки располагали в печи в два ряда, из которых заготовки с температурой поверхности 1239°С поочередно выдавали на прокатку. После нагрева заготовки по рольгангу подавали в камеру гидросбива для предварительного удаления окалины с давлением воды 19,7 МПа и далее транспортировали к четырехвалковой горизонтальной клети.

Получение листового проката толщиной 32 мм и шириной 2300 мм осуществляли с черновой прокаткой в 8 проходов в температурном диапазоне 1070-1015°С с подстуживанием в течение от 320-480 секунд для обеспечения необходимого охлаждения и чистовой прокаткой в 5 проходов в температурном диапазоне 950-910°С.

Получение листового проката толщиной 14 мм и шириной 3000 мм осуществляли с черновой прокаткой в 12 проходов в температурном диапазоне 1030-1010°С с подстуживанием в течение 190-210 секунд и чистовой прокаткой в 7 проходов в температурном диапазоне 960-915°С.

Листовой прокат в горячем состоянии подвергали правке на роликоправильной машине для улучшения его плоскостности, после чего подавали на холодильник. Затем после обрезки боковых кромок листовой прокат подвергался порезке на мерные длины. Готовые листы передавали в отделение термообработки.

Оценку микроструктуры стали и механических свойств проводили в соответствии с действующими стандартами. Исследования показали, что микроструктура стали представляла собой однородную мелкодисперсную структуру, содержание перлита 40% и феррита 60%. Средний размер зерна феррита имеет балл 6-8. Механические характеристики, полученные при растяжении образцов вдоль и поперек оси прокатки листа, составили: σв - 640 МПа, σт - 550 МПа, δ - 24%, KCU - 118 Дж/см2.

Преимущества предлагаемого способа заключаются в том, что разливка металла с регламентированной скоростью в зависимости от технологических параметров, последующая горячая черновая и чистовая прокатка в заявленном температурном интервале обеспечивают формирование оптимальной однородной мелкодисперсной структуры металла с низким содержанием неметаллических включений. За счет этого обеспечивается стабильный уровень механических свойств по длине листового проката.

Похожие патенты RU2410174C1

название год авторы номер документа
СПОСОБ ПРОИЗВОДСТВА БОРСОДЕРЖАЩЕЙ СТАЛИ 2011
  • Шиляев Павел Владимирович
  • Фомичев Игорь Николаевич
  • Симаков Юрий Владимирович
  • Дзюба Антон Юрьевич
  • Назаров Дмитрий Вячеславович
  • Павлов Владимир Викторович
RU2477324C1
СПОСОБ ПРОИЗВОДСТВА ПРОКАТА И ПОКОВОК 2005
  • Гузенков Сергей Александрович
RU2280083C1
СПОСОБ ПРОИЗВОДСТВА БОРСОДЕРЖАЩЕЙ СТАЛИ 2011
  • Сарычев Борис Александрович
  • Пехтерев Сергей Валерьевич
  • Ивин Юрий Александрович
  • Казятин Константин Владимирович
  • Павлов Владимир Викторович
  • Крюкова Наталья Викторовна
RU2492248C2
Способ производства электросварной трубы из низкоуглеродистой стали, стойкой против водородного растрескивания (варианты) 2020
  • Мурсенков Евгений Сергеевич
  • Кудашов Дмитрий Викторович
  • Эфрон Леонид Иосифович
  • Сомов Сергей Александрович
  • Ярмухаметов Марат Рафхатович
  • Лозовский Александр Владимирович
RU2747083C1
СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНОГО ЛИСТОВОГО ПРОКАТА 2001
  • Урцев В.Н.
  • Платов С.И.
  • Штоль В.Ю.
  • Дегтярев В.Н.
RU2184154C1
СПОСОБ ПРОИЗВОДСТВА ТЕРМОУПРОЧНЕННОЙ АРМАТУРЫ 2008
  • Дубровский Борис Александрович
  • Куницын Глеб Александрович
  • Великий Андрей Борисович
  • Селезнев Игорь Васильевич
  • Ивин Юрий Александрович
  • Симаков Юрий Владимирович
  • Павлов Владимир Викторович
RU2360978C1
СПОСОБ ПРОИЗВОДСТВА ПРОКАТА КРУГЛОГО СЕЧЕНИЯ 2001
  • Морозов С.А.
  • Урцев В.Н.
  • Хабибулин Д.М.
  • Штоль В.Ю.
RU2186857C1
СПОСОБ ПРОИЗВОДСТВА КАТАНКИ ДЛЯ ХОЛОДНОДЕФОРМИРОВАННОЙ АРМАТУРЫ 2007
  • Сеничев Геннадий Сергеевич
  • Шмаков Владимир Иванович
  • Дьяченко Виктор Федорович
  • Бодяев Юрий Алексеевич
  • Карпов Евгений Вениаминович
  • Николаев Олег Анатольевич
RU2333261C1
СПОСОБ ПРОИЗВОДСТВА ВЫСОКОУГЛЕРОДИСТОЙ СТАЛИ С ПОСЛЕДУЮЩЕЙ НЕПРЕРЫВНОЙ РАЗЛИВКОЙ В ЗАГОТОВКУ МАЛОГО СЕЧЕНИЯ 2011
  • Ерошкин Сергей Борисович
  • Лаушкин Олег Александрович
  • Кузнецов Сергей Николаевич
  • Барташевич Игорь Тадеушевич
  • Федоричев Юрий Викторович
  • Водовозова Галина Сергеевна
  • Копытова Наталья Владимировна
RU2460807C1
СПОСОБ ПРОИЗВОДСТВА УГЛЕРОДИСТОЙ СТАЛИ 2006
  • Павлов Владимир Викторович
  • Хабибулин Дим Маратович
RU2304622C1

Реферат патента 2011 года СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНОГО ЛИСТОВОГО ПРОКАТА

Изобретение предназначено для получения горячекатаного листового проката с однородной мелкодисперсной структурой и низким содержанием неметаллических включений. Способ включает выплавку металла, внепечную обработку, разливку металла через промежуточный ковш на машине непрерывного литья заготовок, нагрев заготовки в нагревательных печах, горячую прокатку металла с получением листового проката толщиной 10-50 мм и термообработку. Получение требуемого предела текучести, минимального содержания и размера неметаллических включений по длине листового проката обеспечивается за счет того, что разливку металла через промежуточный ковш на машине непрерывного литья заготовок производят со скоростью, определяемой из выражения: V=0,521·(L-0,639)·(2·k/x)2·0,00718·(Tп/к-Tликв)-2,369·[S]-8,36·([Mn]/[S]), где V - скорость разливки, м/мин; L - металлургическая длина криволинейной МНЛЗ, м; k - коэффициент затвердевания металла; х - толщина сляба, мм; Тп/к - температура металла в промежуточном ковше, °С; Тликв - температура ликвидуса металла, С; Mn, S - содержание марганца и серы в металле перед разливкой, %, нагрев производят в течение 5-8 часов, выдачу - с температурой 1200-1300°С, черновую прокатку - при температуре 990-1080°С и чистовую - при температуре 880-970°С.

Формула изобретения RU 2 410 174 C1

Способ производства горячекатаного листового проката, включающий выплавку металла, внепечную обработку, разливку металла через промежуточный ковш на криволинейной машине непрерывного литья заготовок, нагрев заготовки в нагревательных печах, горячую прокатку металла с получением листового проката толщиной 10-50 мм и термообработку, отличающийся тем, что разливку металла ведут со скоростью, определяемой из выражения:
V=0,521·(L-0,639)·(2·k/x)2·0,00718·(Tп/к-Tликв)-2,369·[S]-8,36·([Mn]/[S]),
где V - скорость разливки, м/мин;
L - металлургическая длина криволинейной МНЛЗ, м;
k - коэффициент затвердевания металла;
х - толщина сляба, мм;
Тп/к - температура металла в промежуточном ковше, °С;
Тликв - температура ликвидуса металла, °С;
Mn, S - содержание марганца и серы в металле перед разливкой, %;
0,521, 0,639, 0,00718, 2,369, 8,36 - эмпирические коэффициенты, нагрев заготовки осуществляют в течение 5-8 ч и заготовку выдают с температурой 1200-1300°С, а горячую прокатку металла ведут с черновой прокаткой в интервале температур 990-1080°С и чистовой прокаткой в интервале температур 880-970°С.

Документы, цитированные в отчете о поиске Патент 2011 года RU2410174C1

СПОСОБ ПРОИЗВОДСТВА ПРОКАТА ИЗ УГЛЕРОДИСТЫХ И НИЗКОЛЕГИРОВАННЫХ СТАЛЕЙ 2005
  • Никитин Валентин Николаевич
  • Маслюк Владимир Михайлович
  • Немтинов Александр Анатольевич
  • Зинченко Сергей Дмитриевич
  • Кувшинников Олег Александрович
  • Сапельников Василий Владимирович
  • Никитин Михаил Валентинович
  • Зиборов Александр Васильевич
  • Балдаев Борис Яковлевич
  • Рослякова Наталья Евгеньевна
  • Трайно Александр Иванович
  • Зеленин Михаил Евгеньевич
RU2308492C2
СПОСОБ ПОЛУЧЕНИЯ ТЕКСТУРИРОВАННОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ ПОЛОСОВОЙ СТАЛИ С ВЫСОКИМИ МАГНИТНЫМИ ХАРАКТЕРИСТИКАМИ, НАЧИНАЯ С ТОНКИХ СЛЯБОВ 1997
  • Фортунати Стефано
  • Чикале Стефано
  • Аббрудзесе Джузеппе
RU2194775C2
СПОСОБ ПОТОЧНОГО ПРОИЗВОДСТВА КАТАНКИ ИЗ НЕРЖАВЕЮЩИХ СТАЛЕЙ И ПРЕЦИЗИОННЫХ И ЖАРОПРОЧНЫХ СПЛАВОВ 1996
  • Баржин Л.В.
  • Галкин М.П.
  • Степанов В.П.
  • Пивоваров И.Г.
  • Никитин Г.С.
RU2100109C1
DE 10357363 A1, 14.07.2005.

RU 2 410 174 C1

Авторы

Урцев Владимир Николаевич

Хабибулин Дим Маратович

Даты

2011-01-27Публикация

2010-03-18Подача