СПОСОБ ПОЛУЧЕНИЯ ХЛОРИСТОГО КАЛИЯ Российский патент 2011 года по МПК C01D3/08 

Описание патента на изобретение RU2415082C1

Изобретение относится к технике получения хлористого калия из сильвинитовых руд методом растворения-кристаллизации.

Известны способы получения хлористого калия с использованием вакуум-кристаллизации - см. Горный журнал №8, 2007, с.25-30. По известным способам кристаллизат отделяют от жидкой фазы гидросепарацией и фильтрацией, которую возвращают на стадию растворения сильвинитовых руд. Недостатками известных способов являются вынос легких фракций хлористого калия на стадиях сгущения и фильтрации и возврат их вместе с циркулирующим растворяющим раствором на стадию растворения сильвинитовых руд, что снижает емкость оборотного раствора по хлористому калию, ведет к увеличению объема циркулирующего щелока и увеличению энергозатрат на эти операции.

Известен способ получения хлористого калия, включающий растворение циклонной пыли в водном растворе хлористого калия после стадии мокрой пылегазоочистки до степени насыщения растворов по KCl 0,90-0,94, промывку кристаллизата на центрифугах этим раствором и смешение полученного отработанного раствора с горячим насыщенным щелоком перед ВКУ - см. А.с. СССР №1490082, МКИ С01D 3/08, 16.03.87-89 гг. Предложенный способ сложен в реализации, так как для его осуществления необходимо использовать значительное количество воды, что ведет к водному дебалансу в процессе, к увеличению циркуляционных потоков жидких фаз и к потерям целевого продукта.

Известен способ получения обеспыленных калийных удобрений путем растворения исходной руды, получения насыщенного раствора хлористого калия с последующим его охлаждением и кристаллизацией твердой фазы, классификации твердой фазы и возврата части твердой фазы, которая представляет собой фракцию 0,16-0,60 мм в количестве 10-40% от общего количества фракции на стадию кристаллизации - см. А.с СССР №1162774, МКИ С05D 1/02, 14.02.84-23.06.85.

Предложенный способ сложен в реализации, так как предусматривает возврат холодной суспензии хлористого калия фракции до 0,6 мм в голову установки вакуум-кристаллизации (ВКУ) в количестве до 40% без ввода воды, что ведет к высаливанию хлористого натрия при повышении температуры и растворении мелких фракций хлористого калия, а также к увеличению циркуляционных потоков жидких фаз в цикле растворения-кристаллизации.

Известен способ получения хлористого калия из сильвинитов, включающий их растворение, кристаллизацию целевого продукта из раствора в многоступенчатых вакуум-кристаллизаторах, классификацию твердой фазы, ее промывку, сушку, обеспыливание, растворение мелких фракций хлористого калия с возвратом раствора в процесс, при этом крупные фракции хлористого калия фильтруют, мелкие направляют во внешние контуры аппаратов регулируемой вакуум-кристаллизации, а мелкокристаллический хлористый калий, полученный на стадии сушки и обеспыливания, подают в виде суспензии с отношением жидкого к твердому - Ж:Т=1,0-5,0 при температуре 70-95°С в первый корпус установки регулируемой вакуум-кристаллизации, а конденсат с установки регулируемой вакуум-кристаллизации - во внешние контуры аппаратов - см. патент РФ №2143999, МКИ С01D 3/08, 10.03.98-10.01.2000, Публ. Бюл. №1 - прототип. Способ отличается сложностью, так как при гидроклассификации кристаллизата по классу ±0,2 мм и его фильтрации в жидкой фазе содержится до 35 г/л хлористого калия фракции 0-0,25 мм (в среднем 0,1 мм). Возврат этой суспензии на стадию растворения ведет к уменьшению емкости растворяющего щелока по KCl, увеличению циркуляционных потоков и, следовательно, энергозатрат.

Задачей предлагаемого изобретения является упрощение процесса за счет сокращения потока циркулирующего растворяющего раствора, а следовательно, энергозатрат вследствие сокращения содержания в нем кристаллического хлористого калия без ухудшения гранулометрического и химического составов целевого продукта после ВК.

Поставленная задача достигается тем, что в отличие от известного способа по предполагаемому способу жидкая фаза, полученная после гидроклассификации и фильтрации кристаллизата, дополнительно осветляется с получением осветленного раствора, подаваемого на растворение сильвинитов, и сгущенной суспензии, подаваемой на ВК с добавлением воды на возмещение ее потерь за счет ее испарения из жидкой фазы при охлаждении ее под вакуумом с температуры в приемном баке ВК до температуры в последнем корпусе. При осветлении жидкой фазы получают сгущенную суспензию с отношением жидкого к твердому - Ж:Т=1,0-2,5, а для возмещения потерь воды из жидкой фазы сгущенной суспензии за счет ее испарения добавляют воду в количестве 1,3-1,4% от веса жидкой фазы на каждые 10°С перепада температур ВК.

Сущность способа как технического решения заключается в следующем. В отличие от известного способа жидкая фаза, полученная после гидроклассификации и фильтрации кристаллизата после вакуум-кристаллизации, дополнительно осветляется с получением осветленного раствора, подаваемого на растворение сильвинитов, и сгущенной суспензии предпочтительно с Ж:Т=1,0-2,5, подаваемой в первый корпус вакуум-кристаллизационной установки (ВКУ) или в приемный бак ВКУ.

На действующих калийных предприятиях для гидроклассификации кристаллизата, полученного на ВКУ, используют гидроциклоны и сгустители, а фильтрацию сгущенной суспензии осуществляют на центрифугах либо вакуум-фильтрах. В результате осуществления этих операций получают жидкую фазу с содержанием в ней кристаллизата хлористого калия на уровне 15-35 г/л и кристаллизат с влажностью 3,5-5,5%, который после обезвоживания и обеспыливания является целевым продуктом.

Жидкую фазу, содержащую 15-35 г/л KCl в виде мелкокристаллической твердой фазы фракции 0-0,25 мм (в среднем - 0,1 мм), нагревают и подают на растворение сильвинитов. Из-за наличия в циркулирующем растворяющем растворе кристаллического хлористого калия снижается его емкость по KCl и для растворения сильвина (хлористого калия), содержащегося в сильвините, необходим больший объем растворяющего раствора, а следовательно, увеличивается нагрузка на ВКУ, насосы, сгустители и др. оборудование и соответственно энергозатраты.

В таблице 1 приведено изменение расхода растворяющего раствора для получения 200 т/ч целевого продукта - 1 технологическая линия, например, на ОАО «Уралкалий» - в зависимости от содержания в нем кристаллизата для получения раствора, насыщенного по KCl при температуре 100°С (содержание KCl в жидкой фазе растворяющего раствора при 35°С и содержании MgCl2 - 0,5%-12,17%).

Таблица 1 № пп Содержание кристаллизата KCl в растворяющем растворе, г/л Снижение выхода кристаллизата KCl целевой фракции на ВКУ, т/ч Расход растворяющего раствора, т/ч 1 0 0 1806,5 2 3 4,505 1853,3 3 5 7,632 1885,8 4 10 15,894 1971,4 5 20 34,662 2166,2 6 30 57,123 2399,3 7 50 118,671 3038,0

Из приведенных в таблице 1 данных видно, что снижение содержания кристаллизата в растворяющем растворе является актуальным и необходима операция дополнительного осветления жидкой фазы, полученной после гидроклассификации и фильтрации хлористого калия после ВКУ. Такую операцию по предлагаемому способу предлагается проводить на известных сгустителях с наклонными пластинами (ламелями) либо путем двухстадийной гидроклассификации на циклонах по граничному зерну 0,1 мм. Опыт показывает, что при начальном содержании твердой фазы в сливе ВКУ до 35 г/л на известном стандартном оборудовании достигается остаточное содержание твердой фазы в растворяющем растворе менее 3 г/л класса 0-0,1 мм.

Полученный осветленный раствор с содержанием кристаллизата менее 3 г/л класса 0-0,1 мм подают на растворение сильвинитов, а сгущенную суспензию с Ж:Т предпочтительно 1,0-2,5 подают в приемный бак ВКУ либо в первый корпус ВКУ. Отношение жидкого к твердому - Ж:Т в сгущенной суспензии поддерживают предпочтительно на уровне 1,0-2,5. Снижение Ж:Т менее 1 ведет к потере текучести суспензии, а повышение свыше 2,5 к увеличению ретурного потока жидкой фазы на ВКУ.

Подача сгущенной суспензии в голову вакуум-кристаллизации совместно с осветленным насыщенным горячим щелоком способствуют повышению его степени насыщения по KCl, наличию «зародышей» кристаллизации хлористого калия и образованию кристаллизата уже в первом корпусе ВКУ. При этом наиболее мелкие классы суспензии, имеющие развитую поверхность, растворяются, а крупные фракции при охлаждении раствора растут с образованием целевого продукта заданного гранулометрического состава.

Авторы определили, что ввод суспензии в голову ВКУ не вызывает снижения гранулометрического состава и изменения химического состава целевого продукта в целом, а снижение температуры в приемном баке ВКУ на ~2°С не приводит к ухудшению параметра «рекуперация тепла» ВКУ.

По предлагаемому способу наряду со сгущенной суспензией предлагается добавлять воду для возмещения ее потерь за счет испарения жидкой фазы сгущенной суспензии при ее охлаждении с температуры в приемном баке ВКУ до температуры в последнем корпусе кристаллизационной установки.

Воду необходимо подавать для предотвращения кристаллизации хлорида натрия из жидкой фазы сгущенной суспензии, подаваемой в голову ВКУ, при ее испарении под вакуумом. Расход воды зависит от конструктивных особенностей оборудования ВКУ, ее теплопотерь, наличия внутренних контуров и др. параметров и находится в пределах 1,3-1,4% от веса жидкой фазы суспензии на каждые 10°С перепада температур ВК. Из-за малого значения расхода воды можно принять ее среднее значение 1,35% с учетом перепада температур. Вода может быть подана как в голову ВК, так и в первые корпуса ВКУ.

В таблице 2 приведена зависимость расхода воды от расхода и Ж:Т сгущенной суспензии, подаваемой на ВКУ. При составлении таблицы 2 принят объем производства целевого продукта - 200 т/ч, содержание кристаллизата в сливе ВК - 35 г/л, остаточное содержание кристаллизата в растворяющем растворе - 5 г/л, среднее значение расхода воды - 1,35% от веса жидкой фазы на каждые 10°С перепада температур. Для таблицы 2 приняты граничные значения температуры 95°С и 35°С, т.е. Δt=60°С.

Таблица 2 № пп Расход сгущенной суспензии, т/ч Ж:Т сгущенной суспензии Расход жидкой фазы, содержащейся в сгущенной суспензии, т/ч Расход воды при перепаде температур 60°С, т/ч 1 90,138 0,5 30,046 2,4 2 120,184 1.0 60,092 4,9 3 150,230 1,5 90,138 7,3 4 180,276 2,0 120,184 9,7 5 210,322 2,5 150,230 12,2 6 240,367 3,0 180,275 14,6

При изменении расхода сгущенной суспензии за счет изменения объема производства KCl и эффективности осветления слива ВКУ, а также начальной и конечной температуры ВКУ расход воды изменится пропорционально.

Предлагаемый способ позволит наряду с суспензией хлористого калия, получаемой в цикле пылегазоочистки в отделении сушки, использовать растворы KCl, полученные при малых расходах сухого мелкодисперсного хлористого калия.

Таким образом, решается задача предлагаемого изобретения - упрощение процесса за счет сокращения потока циркулирующего растворяющего раствора, а следовательно, энергозатрат вследствие сокращения содержания в нем кристаллического хлористого калия без ухудшения гранулометрического и химического составов целевого продукта при его вакуум-кристаллизации.

Способ осуществляют следующим образом. Дробленую сильвинитовую руду растворяют в циркулирующем растворяющем растворе, отделяют галитовый отвал, осветляют горячий насыщенный щелок и в него подают суспензию хлористого калия (раствор KCl), полученную на стадии сушки и обеспыливания целевого продукта. Разбавленный осветленный насыщенный щелок подают на установку вакуум-кристаллизации, где во внутренних контурах ВКУ происходит классификация кристаллизата. Крупные фракции кристаллизата отделяют, фильтруют, а мелкие возвращают на доращивание кристаллов в контурах внутри ВКУ. Слив с установки вакуум-кристаллизации и фильтрат дополнительно осветляют с получением осветленного раствора, который подают на растворение сильвинитов в качестве растворяющего раствора. Сгущенную суспензию, полученную при осветлении слива ВКУ, например, на сгустителях с наклонными пластинами либо каскаде гидроциклонов, предпочтительно с Ж:Т=1,0-2,5 подают в голову установки вакуум-кристаллизации - в приемный бак ВКУ либо в первый корпус установки с добавлением воды для возмещения ее потерь за счет испарения жидкой фазы сгущенной суспензии при ее охлаждении под вакуумом с температуры в приемном баке ВК до температуры в последнем корпусе. Расход воды зависит от конструктивных особенностей установки (эффективности охлаждения за счет испарения), температуры и др. факторов и находится в пределах 1,3-1,4% от веса жидкой фазы на каждые 10% перепада температур на входе и выходе корпусов ВКУ. Практика показывает, что может быть принято среднее значение расхода воды - 1,35%.

В результате осуществления способа получают продукт, содержащий класса -0,2 мм не более 3% с содержанием основного вещества - KCl в интервале 95-98,5% в зависимости от требований рынка.

Примеры осуществления способа.

Пример 1.

Дробленную сильвинитовую руду растворяли в циркулирующем растворяющем растворе, галитовый отвал отделяли фильтрацией, горячей насыщенный щелок осветляли и в него подавали суспензию хлористого калия, полученную на стадии сушки и обеспыливания целевого продукта. Разбавленный осветленный насыщенный щелок с температурой 97°С подавали в приемный бак установки вакуум-кристаллизации, где раствор охлаждался за счет испарения под вакуумом до температуры 35°С. Во внутренних контурах ВКУ происходила классификация кристаллизата. Крупные фракции (+0,25 мм) кристаллизата отделяли гидроклассификацией и фильтрацией, а мелкие возвращали на доращивание во внутренних контурах ВКУ. Крупные фракции сушили и обеспыливали с получением целевого продукта. Слив ВКУ в количестве 2534,024 состава: жидкая фаза - KCl 12,17%, NaCl 19,32%, MgCl2 0,5%, CaSO4 0,50%, Н2О - остальное; твердая фаза - KCl 99,6%, NaCl 0,4%, содержащий 35 г/л твердой фазы, подвергли дополнительному осветлению в сгустителе с наклонными пластинами с получением 2353,748 т/ч растворяющего циркулирующего раствора, содержащего 5 г/л твердой фазы и 180,276 т сгущенной суспензии с Ж:Т=2, которую подавали в приемный бак ВКУ, где температура снизилась до 95°С. Одновременно в приемный бак подали 9,735 т воды из расчета перепада температуры на ВКУ 95-35=60°С и расходе воды 1,35% от содержания жидкой фазы в сгущенной суспензии. Получили 200 т целевого продукта с содержанием KCl 98,2% и фракции -0,25-2%, +0,25 - остальное.

Пример 2.

Способ осуществляли в соответствии с примером 1, но для дополнительного осветления использовали двухстадийную систему гидроциклонов, при этом на первой стадии получили сгущенную суспензию с Ж:Т=5, а на 2 стадии - с Ж:Т=2. Слив со 2-й стадии поступал на первую стадию гидроциклонов совместно со сливом ВКУ. Слив с 1 стадии поступал на растворение сильвинитовой руды. В осветленный насыщенный щелок вместо суспензии KCl из отделения сушки подавали раствор KCl.

Похожие патенты RU2415082C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ХЛОРИСТОГО КАЛИЯ 2012
  • Сафрыгин Юрий Степанович
  • Осипова Галина Владимировна
  • Букша Юрий Владимирович
  • Тимофеев Владимир Иванович
  • Паскина Анна Владимировна
RU2493100C1
СПОСОБ ПОЛУЧЕНИЯ ХЛОРИСТОГО КАЛИЯ ИЗ СИЛЬВИНИТОВЫХ РУД 2013
  • Сафрыгин Юрий Степанович
  • Букша Юрий Владимирович
  • Паскина Анна Владимировна
  • Тимофеев Владимир Иванович
  • Осипова Галина Владимировна
RU2551508C1
СПОСОБ УПРАВЛЕНИЯ ПРОЦЕССОМ ПОЛУЧЕНИЯ ХЛОРИСТОГО КАЛИЯ 2011
  • Сафрыгин Юрий Степанович
  • Паскина Анна Владимировна
  • Букша Юрий Владимирович
  • Тимофеев Владимир Иванович
  • Осипова Галина Владимировна
RU2479487C1
СПОСОБ ПЕРЕРАБОТКИ КАЛИЙСОДЕРЖАЩИХ РУД 2009
  • Сафрыгин Юрий Степанович
  • Осипова Галина Владимировна
  • Паскина Анна Владимировна
  • Букша Юрий Владимирович
  • Тимофеев Владимир Иванович
RU2414423C1
СПОСОБ ПОЛУЧЕНИЯ ХЛОРИСТОГО КАЛИЯ 2013
  • Сафрыгин Юрий Степанович
  • Букша Юрий Владимирович
  • Тимофеев Владимир Иванович
  • Осипова Галина Владимировна
  • Паскина Анна Владимировна
RU2556939C2
СПОСОБ ПОЛУЧЕНИЯ ХЛОРИДА КАЛИЯ 2011
  • Сафрыгин Юрий Степанович
  • Осипова Галина Владимировна
  • Букша Юрий Владимирович
  • Тимофеев Владимир Иванович
  • Паскина Анна Владимировна
RU2448903C1
СПОСОБ УПРАВЛЕНИЯ ПРОЦЕССОМ ПОЛУЧЕНИЯ ХЛОРИСТОГО КАЛИЯ 2013
  • Сафрыгин Юрий Степанович
  • Букша Юрий Владимирович
  • Паскина Анна Владимировна
  • Тимофеев Владимир Иванович
  • Осипова Галина Владимировна
RU2555487C2
СПОСОБ ПОЛУЧЕНИЯ ХЛОРИДА КАЛИЯ 2010
  • Сафрыгин Юрий Степанович
  • Осипова Галина Владимировна
  • Букша Юрий Владимирович
  • Тимофеев Владимир Иванович
RU2457180C2
СПОСОБ ВЫДЕЛЕНИЯ ХЛОРИСТОГО КАЛИЯ 2006
  • Сафрыгин Юрий Степанович
  • Осипова Галина Владимировна
  • Букша Юрий Владимирович
  • Тимофеев Владимир Иванович
  • Коноплев Евгений Викторович
  • Альжев Илья Алексеевич
  • Зыбин Евгений Гордеевич
  • Лаптев Александр Васильевич
RU2315713C2
СПОСОБ ПОЛУЧЕНИЯ КАРНАЛЛИТА 2011
  • Сафрыгин Юрий Степанович
  • Осипова Галина Владимировна
  • Букша Юрий Владимирович
  • Тимофеев Владимир Иванович
RU2458008C1

Реферат патента 2011 года СПОСОБ ПОЛУЧЕНИЯ ХЛОРИСТОГО КАЛИЯ

Изобретение может быть использовано при переработке сильвинитовых руд. Способ получения хлористого калия из сильвинитов включает их растворение, кристаллизацию целевого продукта из раствора в многоступенчатых вакуум-кристаллизаторах (ВК), гидроклассификацию твердой фазы с возвратом мелких фракций в контуре кристаллизации, фильтрацию крупных фракций кристаллизата. Мелкокристаллический хлористый калий, полученный на стадии сушки и обеспыливания, растворяют с получением суспензии, возвращаемой на ВК. Жидкую фазу, полученную после гидроклассификации и фильтрации кристаллизата, дополнительно осветляют с получением осветленного раствора и сгущенной суспензии. Осветленный раствор подают на растворение сильвинитов, а сгущенную суспензию направляют на ВК с добавлением воды на возмещение ее потерь за счет испарения жидкой фазы при охлаждении ее под вакуумом от температуры в приемном баке ВК до температуры в последнем корпусе. Изобретение позволяет упростить процесс за счет сокращения потока циркулирующего растворяющего раствора. 2 з.п. ф-лы, 2 табл.

Формула изобретения RU 2 415 082 C1

1. Способ получения хлористого калия из сильвинитов, включающий их растворение, кристаллизацию целевого продукта из раствора в многоступенчатых вакуум-кристаллизаторах (ВК), гидроклассификацию твердой фазы с возвратом мелких фракций в контуре кристаллизации, фильтрацию крупных фракций кристаллизата, растворение мелкокристаллического хлористого калия, полученного на стадии сушки и обеспыливания, с получением суспензии, возвращаемой на ВК, отличающийся тем, что жидкая фаза, полученная после гидроклассификации и фильтрации кристаллизата, дополнительно осветляется с получением осветленного раствора, подаваемого на растворение сильвинитов, и сгущенной суспензии, подаваемой на ВК с добавлением воды на возмещение ее потерь за счет испарения жидкой фазы при охлаждении ее под вакуумом от температуры в приемном баке ВК до температуры в последнем корпусе.

2. Способ по п.1, отличающийся тем, что при осветлении получают сгущенную суспензию с отношением жидкого к твердому Ж:Т=1,0-2,5.

3. Способ по 1, отличающийся тем, что для возмещения потерь воды из жидкой фазы сгущенной суспензии за счет ее испарения добавляют воду в количестве 1,3-1,4% от веса жидкой фазы на каждые 10°С перепада температур ВК.

Документы, цитированные в отчете о поиске Патент 2011 года RU2415082C1

СПОСОБ ПОЛУЧЕНИЯ ХЛОРИДА КАЛИЯ 1998
  • Сафрыгин Ю.С.
  • Федоров Г.Г.
  • Букша Ю.В.
  • Тимофеев В.И.
  • Паскина А.В.
  • Поликша А.М.
  • Городецкий В.И.
  • Чистяков А.А.
  • Шанин В.П.
  • Гуров В.М.
RU2143999C1
SU 1837586 A1, 10.03.1997
Способ получения хлористого калия 1988
  • Попов Геннадий Николаевич
  • Гершман Людмила Борисовна
  • Федоров Георгий Георгиевич
  • Губанова Людмила Михайловна
  • Бударева Ренена Андреевна
SU1629247A1
Способ получения хлористого калия 1987
  • Пуха Иван Константинович
  • Колпиков Герман Георгиевич
  • Грабовенко Валентин Александрович
SU1490082A1
US 4533465 A, 06.08.1995
САФРЫГИН Ю.С
и др
Технология производства галургического хлористого калия в России и Беларуси, Горный журнал, 2007, №8, с.25-30.

RU 2 415 082 C1

Авторы

Сафрыгин Юрий Степанович

Паскина Анна Владимировна

Букша Юрий Владимирович

Тимофеев Владимир Иванович

Осипова Галина Владимировна

Даты

2011-03-27Публикация

2009-09-24Подача