Изобретение относится к технике получения хлористого калия из сильвинитовых руд методом растворения-кристаллизации.
Известны способы получения хлористого калия из сильвинитовых руд, включающие их растворение в нагретом оборотном растворе, осветление слива растворителей - горячего раствора, насыщенного хлористым калием и хлористым натрием, от глинисто-солевого шлама, кристаллизацию целевого продукта из осветленного раствора на установках вакуум-кристаллизации (ВКУ), отделение кристаллизата от маточного раствора, нагрев маточного раствора и возврат его на растворение сильвинитовых руд - см., например, М.Е. Позин, Технология минеральных солей, Часть 1, Изд. «Химия», Л.О., 1970, с.154-159; А.Б. Здановский, Галургия, Изд. «Химия», Л.О., 1972, с.466-469; О.Д. Кашкаров, И.Д. Соколов, Технология калийных удобрений, Изд. «Химия», Л.О., 1978, с.38-43.
Во всех известных способах получают целевой продукт с содержанием основного вещества 96-99% KCl путем нормированного ввода воды в осветленный насыщенный раствор для предотвращения кристаллизации хлористого натрия совместно с кристаллизацией хлористого калия. Эксплуатация калийных производств показала, что управление только водным балансом процесса кристаллизации хлористого калия не позволяет получать целевой продукт с нижней границей содержания в нем KCl: по требованию нормативной документации - не ниже 95%. Практически вместо 95% хлористого калия отгружают 97,0-97,7% продукт, так как для предотвращения образования бракованной продукции процесс кристаллизации ведут при степени насыщения раствора в корпусах ВКУ по хлористому натрию менее 1 за счет ввода избыточного количества воды. Это влечет за собой большие экономические потери для производителей целевого продукта за счет отгрузки вместо 95% KCl продукта с содержанием 97,0-97,7% KCl, так как ценовой надбавки за тонно-процент для хлористого калия не существует.
Известны способы получения хлористого калия путем изменения входного потока воды в зависимости от изменения расхода поступающего на кристаллизацию осветленного насыщенного раствора, содержания в нем хлористого калия, хлористого натрия, хлористого магния и температуры раствора - см. патенты РФ №2406695, кл. С01D 3/04, G05D 27/00, публ. 20.12.2010, Бюл. №35 и №2399587, кл. С01D 3/04, G05D 27/00, публ. 10.06.2010, Бюл. №26.
Известные способы позволяют управлять водным балансом процесса кристаллизации хлористого калия на ВКУ за счет обеспечения степени насыщения по NaCl раствора в корпусах установки на уровне 1,0 при получении 96% продукта и 0,9 - при получении 98% продукта. Внедрение известных способов позволило сократить расход воды на ВКУ, однако во избежание образования «брака» продукции содержание в кристаллизате хлористого калия поддерживают на уровне 96,5-97,0% KCl, так как в процессе кристаллизации в насыщенных по NaCl растворах наблюдается процесс окклюзии - захват кристаллами маточного раствора, вследствие чего независимо от степени разбавления водой охлаждаемого на ВКУ раствора содержание NaCl в кристаллизате колеблется в интервале 0,7-1,5%. Этот процесс зависит от ряда трудно управляемых факторов - интенсивности кипения раствора в корпусах, Ж:Т суспензии, рельефа кристаллов, величины сростков и др.
Известен способ получения хлористого калия из сильвинитовых руд, включающий их растворение в нагретом оборотном маточном растворе, выделение галитового отвала, выделение из слива растворителей солевого шлама в сгустителях и гидроциклонах, осветление слива сгустителей от глинисто-солевого шлама, кристаллизацию хлористого калия под вакуумом из осветленного раствора, сгущение суспензии кристаллизата и ее фильтрацию с выделением продукта с содержанием 97-98,5% KCl в пересчете на сухое вещество, нагрев оборотного раствора и возврат его на растворение - прототип - см. Горный журнал, №8, 2007, ISS 0017-2278, www.rudmet.ru, Технология производства галургического хлористого калия в России и Беларуси, с. 25-30.
Известный способ также не позволяет получать целевой продукт с нижней границей содержания в нем KCl в соответствии с нормативной документацией, что влечет за собой экономические потери в производстве.
Задачей предлагаемого изобретения является создание возможности снижения экономических потерь за счет отгрузки вместо 95% хлористого калия продукта повышенного качества.
Поставленная цель достигается тем, что, в отличие от известного способа получения хлористого калия из сильвинитовых руд, включающего их растворение в нагретом оборотном маточном растворе, выделение галитового отвала, выделение из слива растворителей солевого шлама в сгустителях и гидроциклонах, осветление слива сгустителей от глинисто-солевого шлама, кристаллизацию хлористого калия под вакуумом из осветленного раствора, сгущение суспензии кристаллизата и ее фильтрацию с выделением продукта, нагрев оборотного раствора и возврат его на растворение, по предлагаемому способу сгущенный солевой шлам после сгустителей смешивают с нагретым оборотным маточным раствором до Ж:Т=2-4, полученную суспензию разделяют на гидроциклонах по граничному зерну 0,1÷0,2 мм, слив гидроциклонов направляют на растворение сильвинитовых руд, а «пески» гидроциклонов с Ж:Т=0,6-1,5 частично добавляют в сгущенную суспензию хлористого калия перед ее фильтрацией в количестве, необходимом для корректировки содержания KCl в сухом продукте до требований нормативной документации, а оставшуюся часть «песков» направляют на фильтрацию совместно с галитовым отвалом.
Сущность способа как технического решения заключается в следующем: в отличие от известного способа получения хлористого калия из сильвинитовых руд, включающего их растворение в нагретом оборотном маточном растворе, выделение галитового отвала, выделение из слива растворителей солевого шлама в сгустителях и гидроциклонах, осветление слива сгустителей от глинисто-солевого шлама, кристаллизацию хлористого калия под вакуумом из осветленного раствора, сгущение суспензии кристаллизата и ее фильтрацию с выделением продукта, нагрев оборотного раствора и возврат его на растворение, по предлагаемому способу сгущенный солевой шлам после сгустителей смешивают с нагретым оборотным маточным раствором до Ж:Т=2-4, полученную суспензию разделяют на гидроциклонах по граничному зерну 0,1÷0,2 мм, слив гидроциклонов направляют на растворение сильвинитовых руд, а «пески» гидроциклонов с Ж:Т=0,6-1,5 частично добавляют в сгущенную суспензию хлористого калия перед ее фильтрацией в количестве, необходимом для корректировки содержания KCl в сухом продукте до требований нормативной документации, а оставшуюся часть «песков» направляют на фильтрацию совместно с галитовым отвалом.
Опыт работы калийных предприятий показывает, что корректировать содержание в целевом продукте хлористого калия за счет добавления в него хлористого натрия возможно двумя путями:
- путем увеличения содержания маточного раствора в отфильтрованном кристаллизате;
- добавлением в готовый продукт кристаллического хлористого натрия.
Эти два направления оказались малоэффективными и не получили практического внедрения по следующим причинам: при увеличении содержания в отфильтрованном кристаллизате маточного раствора при сушке продукта образующийся на поверхности кристаллов хлористого калия хлористый натрий оттирается и выдувается из целевого продукта в виде циклонной пыли. При возврате циклонной пыли в готовый продукт наблюдается сегрегация кристаллов по фракциям в процессе хранения и транспортировки продукта, в результате чего меняется его химический состав. Кроме того, ухудшаются физико-химические свойства продукта - его слеживаемость, пылимость, а при сушке более влажного кристаллизата растут энергозатраты.
Второе направление требует завоза дополнительного реагента - хлористого натрия, его измельчения до крупности целевого продукта, создания системы хранения и дозировки хлористого натрия.
Анализ работы калийных предприятий показывает, что в качестве такого реагента может быть использован солевой шлам галургического производства, образующийся при растворении сильвинитовой руды. Солевой шлам образуется из мелких классов сильвинитовой руды и при высаливании хлористого натрия из нагретого оборотного маточного раствора при растворении в нем хлористого калия сильвинитовой руды. В соответствии с прототипом солевой шлам классифицируют в сгустителях Брандеса при скорости восходящего потока 5-10 м/ч, преимущественно 7 м/ч. При таких скоростях в сгущенной до Ж:Т=0,6-1,0 суспензии осаждаются частицы хлористого натрия размером в основном 0,06-0,7 мм, а фракции размером менее 0,06 мм, представленные в основном глинистыми соединениями, поступают в сливе Брандеса для дальнейшего осветления в сгуститель Дора. Таким образом, в соответствии с прототипом, происходит при сгущении солевого шлама его обогащение по хлористому натрию за счет удаления из него основной части нерастворимых примесей.
По предлагаемому способу, в отличие от известного, сгущенный солевой шлам смешивают с нагретым оборотным раствором до Ж:Т=2-4. В связи с тем, что раствор ненасыщен по хлористому натрию и хлористому калию, в нем при смешении с твердой фазой происходит растворение наиболее мелких частиц хлористого натрия и хлористого калия, а отношение жидкого к твердому в полученной при смешении суспензии до значений Ж:Т=2-4 является оптимальным для гидроклассификации суспензии на циклонах. При смешении и гидроклассификации происходит оттирка нерастворимых примесей (Н.О.), представленных ангидритом (CaSO4) и глинистыми соединениями, от кристаллов хлористого натрия. Такая операция позволяет перевести в слив гидроциклонов практически все мелкие фракции хлористого натрия и получить при гидроклассификации по граничному зерну 0,1-0,2 мм в «песках» циклонов твердую фазу, идентичную по гранулометрическому составу кристаллизату хлористого калия после ВКУ.
В зависимости от химического и гранулометрического состава сильвинитовой руды, поступающей на растворение, количество солевого шлама и его состав могут меняться в широких пределах. Так, например, при растворении руды, имеющей фракции менее 1 мм не более 50%, с содержанием нерастворимых 4,9% и хлористого калия 31,2% доля нерастворимых в солевом шламе достигает 6%, однако при гидроклассификации в «песках» циклонов ее содержание снижается в 2-3 раза, то есть идет обогащение хлористого натрия.
В таблице 1 приведены результаты смешения суспензии с Ж:Т=0,6-1,0, полученной в сгустителе Брандеса, с нагретым до 100°C оборотным маточным раствором до Ж:Т=1,5-4,0 с последующей гидроклассификацией смеси на гидроциклоне по граничному зерну 0,15 мм при давлении на входе в гидроциклон 1,2 кгс/см2.
Из таблицы видно, что в результате смешения солевого шлама, сгущенного до Ж:Т=0,6-1,0, с горячим оборотным раствором и гидроклассификации смеси на циклонах в «песках» гидроциклонов образуется твердая фаза, представленная в основном хлористым натрием, имеющая гранулометрический состав, идентичный кристаллизату хлористого калия после ВКУ перед его фильтрацией на центрифугах.
По предлагаемому способу слив гидроциклонов направляют на растворение, а «пески» гидроклассификации с Ж:Т=0,6-1,5 частично добавляют в сгущенную суспензию хлористого калия перед его фильтрацией в количестве, необходимом для корректировки содержания KCl в сухом продукте до требований нормативной документации, а оставшуюся часть «песков» направляют на фильтрацию совместно с галитовым отвалом.
Повышать Ж:Т «песков» гидроциклона нежелательно, так как при совместной фильтрации галитового отвала и солевого шлама с высоким содержанием в нем горячей жидкой фазы ухудшаются показатели работы вакуум-фильтров, а снижение Ж:Т в «песках» менее 0,6 затрудняет работу циклонов и ведет к повышению содержания нерастворимых в твердой фазе.
По нормативной документации - см., например, ГОСТ 4568-95 - содержание хлористого калия в готовом продукте должно быть не менее 95%. В таблице 2 приведено количество твердой фазы в «песках» гидроциклона, которую необходимо добавлять к кристаллизату, в зависимости от его состава в пересчете на сухое вещество, которое определяется автоматически.
Суспензия хлористого натрия подается в сгущенную суспензию хлористого калия в зависимости от расхода хлористого калия и содержания в нем основного вещества. Содержание твердого в «песках» и расход суспензии определяется автоматически, например массрасходометром. Жидкая фаза, представленная насыщенным по солям раствором в «песках» гидроциклона, не оказывает влияния на состав готового продукта, так как она выводится вместе с фильтратом, полученным при отделении кристаллизата.
В таблице 2 не учитывается содержание хлористого калия в хлористом натрии, так как повышение содержания KCl в целевом продукте является незначительным и находится в пределах точности измерений. Присутствие в добавляемом хлористом натрии нерастворимых соединений является незначительным и не ведет к ухудшению качества получаемой продукции.
Таким образом, решается поставленная задача - создается возможность снижения экономических потерь за счет отгрузки вместо 95% хлористого калия продукта повышенного качества путем осуществления предлагаемых технических решений.
Способ осуществляли следующим образом: сильвинитовую руду растворяли в нагретом оборотном маточном растворе. Галитовый отвал отделяли фильтрацией на вакуум-фильтре, а слив растворителей направляли в сгустители Брандеса, где сгущали твердую фазу до Ж:Т=0,6-1,0. Слив сгустителей Брандеса осветляли на сгустителях Дорра от глинисто-солевого шлама, осветленный раствор охлаждали под вакуумом, полученную суспензию сгущали и фильтровали на центрифугах. Сгущенный до Ж:Т=0,6-1,0 солевой шлам смешивали с нагретым оборотным маточным раствором до Ж:Т=2-4, полученную суспензию разделяли на гидроциклонах по граничному зерну 0,1-0,2 мм, слив гидроциклонов направляли на растворение сильвинитовой руды, а «пески» гидроциклонов с Ж:Т=0,6-1,5% частично добавляли в сгущенную суспензию хлористого калия перед ее фильтрацией в количестве, необходимом для корректировки содержания KCl в сухом продукте до требований нормативной документации, а оставшуюся часть «песков» направляли на фильтрацию совместно с галитовым отвалом. Получали готовый продукт с содержанием хлористого калия 95,0-95,4%.
Примеры осуществления способа
Пример 1
Сильвинитовую руду с содержанием KCl 31,2% и 4,9% нерастворимых соединений растворяли в нагретом оборотном маточном растворе. Галитовый отвал отделяли фильтрацией на вакуум-фильтре, а слив растворителей направляли в сгустители Брандеса, где сгущали твердую фазу до Ж:Т=0,8. Слив сгустителей Брандеса осветляли на сгустителях Дорра от глинисто-солевого шлама, осветленный раствор охлаждали под вакуумом, полученную суспензию сгущали и фильтровали на центрифугах. Сгущенный до Ж:Т=0,8 солевой шлам смешивали с нагретым оборотным маточным раствором до Ж:Т=3, полученную суспензию разделяли на гидроциклонах по граничному зерну 0,2 мм, слив гидроциклонов направляли на растворение сильвинитовой руды, а «пески» гидроциклонов с Ж:Т=1 частично добавляли в сгущенную суспензию хлористого калия перед ее фильтрацией в количестве, необходимом для корректировки содержания KCl в сухом продукте до требований нормативной документации, а оставшуюся часть «песков» направляли на фильтрацию совместно с галитовым отвалом. При текущем содержании в кристаллизате 97,5% KCl добавляли 0,026 т/т KCl твердой фазы «песков» гидроциклонов или 0,052 т/т KCl суспензии с Ж:Т=1.
Получили готовый продукт с содержанием 95,1% KCl, что удовлетворяет требованиям ГОСТ 4568-95 на этот продукт.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПЕРЕРАБОТКИ КАЛИЙСОДЕРЖАЩИХ РУД | 2009 |
|
RU2414423C1 |
СПОСОБ ПОЛУЧЕНИЯ ХЛОРИСТОГО КАЛИЯ | 2013 |
|
RU2556939C2 |
СПОСОБ ПОЛУЧЕНИЯ ХЛОРИСТОГО КАЛИЯ | 2012 |
|
RU2500620C1 |
СПОСОБ ПОЛУЧЕНИЯ ХЛОРИДА КАЛИЯ | 2010 |
|
RU2457180C2 |
СПОСОБ ПОЛУЧЕНИЯ ХЛОРИДА КАЛИЯ | 2011 |
|
RU2448903C1 |
СПОСОБ ПОЛУЧЕНИЯ ХЛОРИСТОГО КАЛИЯ | 2009 |
|
RU2415082C1 |
СПОСОБ УПРАВЛЕНИЯ ПРОЦЕССОМ ПОЛУЧЕНИЯ ХЛОРИСТОГО КАЛИЯ | 2013 |
|
RU2555487C2 |
СПОСОБ ПОЛУЧЕНИЯ ХЛОРИДОВ КАЛИЯ И НАТРИЯ ИЗ КАЛИЙ-НАТРИЙСОДЕРЖАЩЕГО СЫРЬЯ | 2022 |
|
RU2792270C1 |
СПОСОБ ПОЛУЧЕНИЯ ШЕНИТА | 2007 |
|
RU2373151C2 |
СПОСОБ УПРАВЛЕНИЯ ПРОЦЕССОМ ПОЛУЧЕНИЯ ХЛОРИСТОГО КАЛИЯ | 2011 |
|
RU2479487C1 |
Изобретение может быть использовано в химической промышленности. Для получения хлористого калия сильвинитовую руду растворяют в нагретом оборотном маточном растворе, выделяют галитовый отвал. Из слива растворителей выделяют солевой шлам в сгустителях и гидроциклонах. Слив сгустителей осветляют от глинисто-солевого шлама. Затем проводят кристаллизацию хлористого калия под вакуумом из осветленного раствора, сгущение суспензии кристаллизата и ее фильтрацию. Оборотный раствор нагревают и возвращают на растворение. Сгущенный солевой шлам после сгустителей смешивают с нагретым оборотным маточным раствором до Ж:Т=2-4. Полученную суспензию разделяют на гидроциклонах по граничному зерну 0,1-0,2 мм. Слив гидроциклонов направляют на растворение сильвинитовых руд. «Пески» гидроциклонов с Ж:Т=0,6-1,5 частично добавляют в сгущенную суспензию хлористого калия перед ее фильтрацией в количестве, необходимом для корректировки содержания KCl в сухом продукте до требований нормативной документации. Оставшуюся часть «песков» направляют на фильтрацию совместно с галитовым отвалом. Изобретение позволяет получить целевой продукт с нижней границей содержания в нем KCl согласно требованиям нормативной документации. 2 табл., 1 пр.
Способ получения хлористого калия из сильвинитовых руд, включающий их растворение в нагретом оборотном маточном растворе, выделение галитового отвала, выделение из слива растворителей солевого шлама в сгустителях и гидроциклонах, осветление слива сгустителей от глинисто-солевого шлама, кристаллизацию хлористого калия под вакуумом из осветленного раствора, сгущение суспензии кристаллизата и ее фильтрацию, нагрев оборотного раствора и возврат его на растворение, отличающийся тем, что сгущенный солевой шлам после сгустителей смешивают с нагретым оборотным маточным раствором до Ж:Т=2-4, полученную суспензию разделяют на гидроциклонах по граничному зерну 0,1÷0,2 мм, слив гидроциклонов направляют на растворение сильвинитовых руд, а «пески» гидроциклонов с Ж:Т=0,6-1,5 частично добавляют в сгущенную суспензию хлористого калия перед ее фильтрацией в количестве, необходимом для корректировки содержания KCl в сухом продукте до требований нормативной документации, а оставшуюся часть «песков» направляют на фильтрацию совместно с галитовым отвалом.
САФРЫГИН Ю.С | |||
и др., Технология производства галургического хлористого калия в России и Беларуси, Горный журнал, 2007, N 8, сс | |||
Видоизменение пишущей машины для тюркско-арабского шрифта | 1923 |
|
SU25A1 |
СПОСОБ ПОЛУЧЕНИЯ ХЛОРИСТОГО КАЛИЯ | 2009 |
|
RU2415082C1 |
СПОСОБ ПОЛУЧЕНИЯ ХЛОРИСТОГО КАЛИЯ ИЗ СИЛЬВИНИТОВОЙ РУДЫ | 2007 |
|
RU2366607C2 |
Способ получения хлористого калия | 1988 |
|
SU1629247A1 |
Способ получения хлористого калия | 1987 |
|
SU1490082A1 |
US 4533465 A, 06.08.1995 |
Авторы
Даты
2015-05-27—Публикация
2013-11-21—Подача