СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВ РЕНИЯ Российский патент 2011 года по МПК B22F9/22 

Описание патента на изобретение RU2416494C1

Изобретение относится к металлургии редких тугоплавких металлов, а именно к способам получения порошков рения из его соединений восстановлением с использованием газообразных восстановителей.

Технической задачей данного изобретения является создание технологии получения порошка рения в качестве исходного материала для плазменного напыления покрытий, получения изделий сложной конфигурации методами порошковой металлургии.

Известен способ получения высокочистого порошка рения, включающий восстановление рениевой кислоты или семиокиси рения водородом при 650-1100°С с предварительным получением раствора с концентрацией 500 г/л по рению пропусканием раствора перрената калия или аммония через ионообменную смолу и испарением раствора (см. заявку JP № 62287006, B22F 9/28, опубл. 23.12.1987 г.).

Недостатками способа являются неизбежное образование низших оксидов рения (ReO2 и ReO3) в камере испарения, что приводит к забиванию фильтра и появлению дополнительного количества воды (раствор HReO4), что понижает температуру в зоне реакции и приводит к увеличению энергетических затрат на проведение процесса.

Известен способ получения высокочистого порошка рения, включающий концентрирование порошка перрената аммония до пересыщенного состояния, охлаждение, фильтрацию и восстановление водородом при 400-600°С (см. патент CN № 1396027, B22F 9/22, опубл. 12.02.2003 г.). Способ принят за прототип.

К основным недостаткам способа можно отнести низкую насыпную плотность получаемых порошков, что не позволяет использовать их для плазменного напыления покрытий, получения изделий сложной конфигурации.

Техническим результатом заявленного изобретения является получение порошка рения размером частиц 0,2-0,5 мкм с однородным фракционным составом (выход фракции составляет 95-98%) и высокой насыпной плотностью (7,8-8,1 г/см3).

Технический результат достигается тем, что в способе получения порошков рения, включающем восстановление перрената аммония газообразным водородсодержащим восстановителем при нагревании, согласно изобретению процесс восстановления ведут непрерывно: сначала в атмосфере водорода и азота при их соотношении 1,0:(0,5-1,0) со скоростью подъема температуры 150-200°С/час до достижения температуры 450-500°С и выдержкой при этой температуре в течение 1,0-1,5 ч с последующим подъемом температуры до 500-650°С, а затем в атмосфере водорода с подъемом температуры до 750-800°С со скоростью 300-400°С/час и выдержкой при данной температуре в течение 0,5-2,0 ч.

Сущность способа заключается в следующем.

Качественные характеристики покрытий и изделий определяются техническими характеристиками порошков рения - дисперсность, насыпная плотность, форма частиц и содержание примесей. Критическими показателями являются однородность гранулометрического состава или, в случае получения ультра- и нанодисперсных порошков, высокий выход этой фракции и удельная поверхность, которая влияет на содержание сорбированных газовых примесей, т.е. чем меньше удельная поверхность зерна, тем меньше сорбированных газов.

Отличие изобретения заключается в том, что равномерный нагрев с заданной скоростью до температуры 450-650°С в атмосфере водорода и азота (1,0:(0,5-1,0)) и выдержка при 450-500°С в течение 1,0-1,5 ч приводят к равномерной деструкции исходной соли с последующей конверсией в металл в атмосфере водорода, которая завершается при температуре 750-800°С и выдержке при данной температуре в течение 0,5-2,0 ч.

Равномерная и последовательная конверсия приводит к получению порошка металлического рения в виде мелкодисперсных частиц с узкофракционным составом (выход фракции с размером частиц 0,5-1,0 мкм не ниже 95% масс.). Кроме того, заявленные режимы обеспечивают предотвращение сорбции на поверхности порошка газовых примесей, таких как водород, кислород, азот.

Обоснование параметров.

Использование смеси водорода и азота в соотношении 1,0:(0,5-1,0) позволяет осуществлять равномерную деструкцию исходной соли при условии соблюдения скорости нагрева 150-200°С/час до температуры 450-650°С и выдержке при 450-500°С в течение 1,0-1,5 ч. Отклонение параметров в ту или иную сторону за указанные пределы приведет к образованию агломератов и снижению выхода целевой мелкокристаллической фазы 0,2-0,5 мкм.

Последующий нагрев прошедшего деструкцию материала в атмосфере водорода до температуры 750-800°С со скоростью 300-400°С/час и выдержка в течение 0,5-2,0 ч завершают формирование мелкокристаллического порошка рения и позволяют достичь высокого выхода монофракции (95-98%).

Отклонение параметров на этой стадии процесса в ту или иную сторону приводит либо к увеличению примесей внедрения в порошке, либо к агломерированию.

Способ иллюстрируется примерами.

Пример 1. В горизонтальную «трубчатую» электропечь устанавливают кварцевый реактор диаметром 120 мм и длиной 1200 мм. В реактор помещают кварцевую лодочку длиной 600 мм, в которую загружают 1200 г сухого перрената аммония NH4ReO4, предварительно подвергнутого дополнительной очистке двукратной перекристаллизацией.

Реактор герметизируют по торцам двумя водоохлаждаемыми крышками, снабженными коаксиально расположенными патрубками.

Собранный реактор подсоединяют к системе регулируемой подачи газов, процесс проводят с использованием водорода, очищенного диффузией через палладиевый фильтр, и азота марки ОСЧ.

Процесс начинают при одновременной подаче водородно-азотной смеси при соотношении водорода и азота 1:0,5, со скоростью подачи водорода и азота 3 л/мин и скорости подъема температуры 200°С/час.

При достижении температуры 450°С делают выдержку в течение часа при неизменной скорости подачи водорода и азота, и дальнейший подъем температуры до 650°С осуществляют со скоростью 200°С/час.

При достижении температуры 650°С подачу азота прекращают, скорость подачи водорода увеличивают до 4 л/мин, и осуществляют нагрев до 800°С со скоростью 350°С/час, и выдерживают в течение 1,5 ч.

Окончание процесса восстановления определяют по изменению концентрации паров воды в газе на выходе из реактора. При содержании паров воды, соответствующих «точке росы» в интервале (-10)÷(-20)°С, процесс считают законченным и питание электропечи отключают.

Охлаждение порошка проводят до температуры 200°С в атмосфере водорода, затем для пассивации полученного металла и предотвращения загорания дальнейшее охлаждение проводят в атмосфере аргона.

При охлаждении реактора до комнатной температуры лодочку с рениевым порошком извлекают, готовый металл высыпают из кварцевой лодочки.

Полученный порошок рения имел следующие характеристики:

- содержание примесей не более 0,0011% вес.;

- размер частиц 0,3-0,5 мкм, насыпная плотность 7,8-8,0 г/см3;

- выход фракции с размером частиц 0,3-0,5 мкм составил 95% масс.

Пример 2. Аппаратурное оформление, приготовление исходных реагентов аналогично примеру 1. Загрузка перрената аммония NH4ReO4 1200 г.

Процесс начинают при одновременной подаче водородно-азотной смеси при соотношении водорода и азота 1:1, со скоростью подачи водорода и азота 3 л/мин и скорости подъема температуры 150°С/час.

При достижении температуры 500°С делают выдержку в течение часа при неизменной скорости подачи водорода и азота, и дальнейший подъем температуры до 650°С осуществляют со скоростью 150°С/час.

При достижении температуры 650°С подачу азота прекращают, скорость подачи водорода увеличивают до 4 л/мин, и осуществляют нагрев до 800°С со скоростью 400°С/час, и выдерживают в течение 2 ч.

Охлаждение порошка проводят до температуры 200°С в атмосфере водорода, затем атмосферу заменяют на аргон.

Полученный порошок рения имел следующие характеристики:

- содержание примесей не более 0,0011% вес.;

- порошок мелкодисперсный и узкофракционный (размер частиц 0,2-0,5 мкм) насыпной плотностью 7,9-8,1 г/см3;

- выход фракции с размером частиц 0,2-0,5 мкм составил 98% масс.

Разработанная технология характеризуется снижением энергозатрат и простым аппаратурным оформлением.

Совокупность заявленных признаков, характеризующих изобретение, обеспечивает достижение суммы положительных характеристик металлических порошков, таких как чистота, дисперсность и высокая насыпная плотность. Структура полученного порошка позволяет использовать его для плазменного напыления покрытий, обеспечивает хорошие условия его компактирования и, соответственно, повышение качества изделий сложной конфигурации.

Похожие патенты RU2416494C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВ МОЛИБДЕНА 2007
  • Воробьева Мария Вячеславовна
  • Едренникова Елена Евгеньевна
  • Иванов Владимир Викторович
  • Левашов Евгений Александрович
  • Ракова Наталия Николаевна
RU2358030C2
Способ получения порошкообразного металлического рения 1991
  • Клименко Анатолий Васильевич
  • Стратонов Александр Владимирович
  • Митник Юрий Викторович
SU1776219A3
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВ ТУГОПЛАВКИХ МЕТАЛЛОВ 2003
  • Андреев Г.Г.
  • Красильников В.А.
  • Гузеева Т.И.
  • Ворошилов Ф.А.
  • Макаров Ф.В.
  • Дубов А.Г.
  • Столбов В.П.
RU2243859C2
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКООБРАЗНОГО МЕТАЛЛИЧЕСКОГО РЕНИЯ 1992
  • Клименко Анатолий Васильевич
RU2015860C1
Способ получения катализатора риформинга бензиновых фракций 2020
  • Степанов Виктор Георгиевич
  • Гаврилова Анна Алексеевна
RU2751942C1
СПОСОБ ПОЛУЧЕНИЯ НАНОДИСПЕРСНЫХ ПОРОШКОВ МОЛИБДЕНА 2008
  • Воробьева Мария Вячеславовна
  • Едренникова Елена Евгеньевна
  • Иванов Владимир Викторович
  • Левашов Евгений Александрович
  • Ракова Наталия Николаевна
RU2367543C1
СПОСОБ ПОЛУЧЕНИЯ КОБАЛЬТОВОГО КАТАЛИЗАТОРА СИНТЕЗА ЖИДКИХ УГЛЕВОДОРОДОВ ПО МЕТОДУ ФИШЕРА-ТРОПША 2012
  • Протасов Олег Николаевич
  • Мамонов Николай Александрович
  • Григорьев Дмитрий Александрович
  • Михайлов Михаил Николаевич
  • Алхимов Сергей Анатольевич
RU2493913C1
КАТАЛИЗАТОР АРОМАТИЗАЦИИ МЕТАНА, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СПОСОБ КОНВЕРСИИ МЕТАНА С ПОЛУЧЕНИЕМ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ 2015
  • Михайлов Михаил Николаевич
  • Михайлов Сергей Александрович
  • Григорьев Дмитрий Александрович
  • Михайлова Мария Владимировна
  • Мамонов Николай Александрович
RU2585289C1
КАТАЛИЗАТОР РИФОРМИНГА НАФТЫ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2015
  • Чжан Дацин
  • Цзан Гаошань
  • Чжан Юйхун
  • Ван Цзясинь
  • Ван Тао
RU2693018C2
СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛИЧЕСКОГО РЕНИЯ ПУТЕМ ВОССТАНОВЛЕНИЯ ПЕРРЕНАТА АММОНИЯ 2013
  • Аникин Вячеслав Николаевич
  • Коноков Геннадий Хаджимусович
  • Золотарева Наталья Николаевна
  • Аникеев Александр Иванович
  • Белокопытова Кристина Евгеньевна
  • Тамбовцева Алла Аганесовна
  • Лукьянычев Сергей Юрьевич
  • Аникин Григорий Вячеславович
  • Аникина Татьяна Георгиевна
  • Крючков Константин Викторович
RU2511549C1

Реферат патента 2011 года СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВ РЕНИЯ

Изобретение относится к металлургии редких тугоплавких металлов, а именно к способам получения порошков рения. Способ включает восстановление перрената аммония с использованием газообразного водородсодержащего восстановителя, причем процесс ведут непрерывно: сначала в атмосфере водорода и азота при их соотношении 1,0:(0,5-1,0) со скоростью подъема температуры 150-200°С/час до достижения температуры 450-500°С и выдержкой при этой температуре в течение 1,0-1,5 часа с последующим подъемом температуры до 500-650°С, а затем в водороде с подъемом температуры до 750-800°С со скоростью 300-400°С/час и выдержкой при данной температуре в течение 0,5-2,0 часов. Технический результат - получение порошка рения размером частиц 0,2-0,5 мкм с однородным фракционным составом (выход фракции составляет 95-98%) и высокой насыпной плотностью (7,8-8,1 г/см3).

Формула изобретения RU 2 416 494 C1

Способ получения порошков рения восстановлением перрената аммония газообразным водородсодержащим восстановителем при нагревании, отличающийся тем, что процесс восстановления ведут непрерывно, причем сначала в атмосфере водорода и азота при их соотношении 1,0:(0,5-1,0) со скоростью подъема температуры 150-200°С/ч до достижения температуры 450-500°С и выдержкой при этой температуре в течение 1,0-1,5 ч с последующим подъемом температуры до 500-650°С, а затем в водороде с подъемом температуры до 750-800°С со скоростью 300-400°С/ч и выдержкой при данной температуре в течение 0,5-2,0 ч.

Документы, цитированные в отчете о поиске Патент 2011 года RU2416494C1

Способ определения температуры фазовых переходов 1986
  • Алексеев Петр Демидович
  • Панова Татьяна Кимзеевна
SU1396027A1
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКООБРАЗНОГО МЕТАЛЛИЧЕСКОГО РЕНИЯ 1992
  • Клименко Анатолий Васильевич
RU2015860C1
Способ получения порошкообразного металлического рения 1991
  • Клименко Анатолий Васильевич
  • Стратонов Александр Владимирович
  • Митник Юрий Викторович
SU1776219A3
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВ ТУГОПЛАВКИХ МЕТАЛЛОВ 2003
  • Андреев Г.Г.
  • Красильников В.А.
  • Гузеева Т.И.
  • Ворошилов Ф.А.
  • Макаров Ф.В.
  • Дубов А.Г.
  • Столбов В.П.
RU2243859C2

RU 2 416 494 C1

Авторы

Воробьева Мария Вячеславовна

Едренникова Елена Евгеньевна

Иванов Владимир Викторович

Левашов Евгений Александрович

Ракова Наталия Николаевна

Даты

2011-04-20Публикация

2009-11-12Подача