Текст описания приведен в факсимильном виде.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ НЕИНВАЗИВНОГО ЭЛЕКТРОФИЗИОЛОГИЧЕСКОГО ИССЛЕДОВАНИЯ СЕРДЦА | 2008 |
|
RU2435518C2 |
СПОСОБ НЕИНВАЗИВНОГО ЭЛЕКТРОФИЗИОЛОГИЧЕСКОГО ИССЛЕДОВАНИЯ СЕРДЦА | 2008 |
|
RU2409313C2 |
СПОСОБ ДИАГНОСТИКИ И КОНТРОЛЯ ЛЕЧЕНИЯ СЕРДЕЧНЫХ ПАТОЛОГИЙ | 2022 |
|
RU2790406C1 |
СПОСОБ НЕИНВАЗИВНОГО ОПРЕДЕЛЕНИЯ ЭЛЕКТРОФИЗИОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК СЕРДЦА | 2017 |
|
RU2651068C1 |
ЭЛЕКТРОКАРДИОГРАФ С ИЗМЕРЕНИЕМ КООРДИНАТ И ПАРАМЕТРОВ ИСТОЧНИКА ЭЛЕКТРИЧЕСКОЙ АКТИВНОСТИ СЕРДЦА | 2010 |
|
RU2448643C2 |
СПОСОБ ТРЕХМЕРНОГО КАРТИРОВАНИЯ КАМЕР СЕРДЦА С ИСПОЛЬЗОВАНИЕМ НАВИГАЦИОННОЙ СИСТЕМЫ "АСТРОКАРД" ДЛЯ ЛЕЧЕНИЯ ПАЦИЕНТОВ С НАРУШЕНИЕМ РИТМА СЕРДЦА | 2019 |
|
RU2724191C1 |
СПОСОБ НЕИНВАЗИВНОЙ АБЛЯЦИИ И ДЕСТРУКЦИИ УЧАСТКОВ ДИЭЛЕКТРИЧЕСКОГО ТЕЛА С ПОТЕРЯМИ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2011 |
|
RU2465860C1 |
ТРЕХМЕРНАЯ РЕКОНСТРУКЦИЯ ТЕЛА И КОНТУРА ТЕЛА | 2008 |
|
RU2479038C2 |
СПОСОБ ДИАГНОСТИКИ СОСТОЯНИЯ СЕРДЕЧНО-СОСУДИСТОЙ СИСТЕМЫ | 2004 |
|
RU2257838C1 |
СПОСОБ ПОВЫШЕНИЯ ТОЧНОСТИ ПРИ ИЗМЕРЕНИИ КООРДИНАТ СИГНАЛОВ МИОКАРДА И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ | 2012 |
|
RU2535439C2 |
Изобретение относится к кардиологии, сердечно-сосудистой хирургии, функциональной диагностике и клинической электрофизиологии сердца. Способ неинвазивного электрофизиологического исследования сердца включает следующие стадии: закрепление регистрирующих электродов на поверхности грудной клетки; регистрация ЭКГ; обработка ЭКГ-сигналов в режиме реального времени; ретроспективная обработка полученных ЭКГ; компьютерная или магнитно-резонансная томография грудной клетки; построение и редактирование компьютерных воксельных моделей органов грудной клетки и сердца; построение полигональных моделей торса и сердца; автоматическое определение координат регистрирующих электродов на поверхности грудной клетки; интерполяция значений ЭКГ-сигналов в узлы полигональной сетки; реконструкция потенциала электрического поля в заданных точках; визуализация результатов реконструкции электрического поля сердца; клиническая оценка результатов. При этом для построения воксельной модели используют алгоритм факторизации сдвига - деформации для преобразования просмотра. Стадия построения полигональных моделей включает: фильтрацию исходных воксельных моделей, построение триангуляционной поверхности, разреживание и улучшение качества сетки с использованием метода пуассоновской реконструкции. Изобретение позволяет повысить точность неинвазивной диагностики нарушений сердечного ритма и других сердечно-сосудистых заболеваний.7 з.п. ф-лы, 19 ил.
1. Способ неинвазивного электрофизиологического исследования сердца, включающий следующие стадии:
закрепление одноразовых регистрирующих электродов на поверхности грудной клетки;
регистрация ЭКГ во множестве однополюсных отведений с поверхности грудной клетки;
обработка ЭКГ-сигналов в режиме реального времени;
ретроспективная обработка полученных ЭКГ;
компьютерная томография (КТ) или магнитно-резонансная томография (МРТ) грудной клетки пациента закрепленными электродами;
построение по томографическим данным и редактирование компьютерных воксельных моделей органов грудной клетки и сердца, при этом для построения воксельной модели используют алгоритм факторизации сдвига - деформации для преобразования просмотра (Shear-Warp Factorization of the Viewing Transformation);
построение при помощи компьютерной программы полигональных моделей торса и сердца, причем стадия построения полигональных моделей включает следующие этапы:
фильтрация исходных вексельных моделей для уменьшения уровня случайного шума;
построение триангуляционной поверхности методом «марширующих кубов» или «методом исчерпывания» («advancing front method»);
разреживание и улучшение качества сетки с использованием метода пуассоновской реконструкции (Poisson Surface Reconstruction);
определение координат регистрирующих электродов на поверхности грудной клетки проводят в автоматическом режиме по данным КТ и МРТ;
интерполяция значений ЭКГ-сигналов в узлы полигональной сетки, которую осуществляют с использованием радиальных базисных функций;
реконструкция потенциала электрического поля в заданных точках грудной клетки, эпикардиальной поверхности сердца, поверхности межжелудочковой и межпредсердной перегородок;
визуализация результатов реконструкции электрического поля сердца в виде эпикардиальных электрограмм, изохронных и изопотенциальных карт, а также динамических карт (propagation maps) на полигональных моделях сердца и его структур;
клиническая оценка результатов.
2. Способ по п.1, в котором для КТ используют наклеиваемые металлические хлор-серебряные электроды, а для МРТ - наклеиваемые графитовые электроды.
3. Способ по п.1, в котором одноразовые электроды закрепляют в виде горизонтальных пяти - восьми поясов, расположенных на одинаковых расстояниях по вертикали, причем первый пояс располагают на уровне грудинно-ключичного сочленения, а последний пояс - на уровне нижнего края реберной поверхности и каждый пояс включает от 16 до 30 электродов, расположенных на одинаковых расстояниях по окружности грудной клетки.
4. Способ по п.1, в котором реконструкцию потенциала электрического поля сердца проводят путем численного решения задачи Коши для уравнения Лапласа методом граничных элементов, включающим решение возникающей в результате применения метода граничных элементов итоговой системы матрично-векторных уравнений
при помощи итерационной процедуры
при этом на каждом шаге итерационного процесса для решения уравнения (13) используют регуляризирующий метод решения, выбранный из группы: метод регуляризации Тихонова, в котором параметр регуляризации определяют по формуле
где α - параметр регуляризации, α0 - малый действительный параметр, зависящий от погрешности задания граничных условий обратной задачи электрокардиографии, р - положительный действительный параметр, зависящий от скорости сходимости итерационной процедуры (11)-(13), β - положительный действительный параметр, зависящий от точности начального приближения (11) в итерационной процедуре (11)-(13),
k - номер итерации в итерационной процедуре (11)-(13),
или
регуляризирующий алгоритм на основе SVD-разложения матрицы уравнения (13) с заменой нулями сингулярных чисел, меньших заданного положительного числа ε, причем параметр ε определяют согласно формуле:
ε=ε0+β·p-(k/2), где ε0 - малый действительный параметр, зависящий от погрешности задания граничных условий обратной задачи электрокардиографии, р - положительный действительный параметр, зависящий от скорости сходимости итерационной процедуры (11)-(13), β - положительный действительный параметр, зависящий от точности начального приближения (11) в итерационной процедуре (11)-(13), k - номер итерации в итерационной процедуре (11)-(13); или
регуляризирующий алгоритм решения уравнения (13) на основе итерационного метода обобщенных минимальных невязок (Generalized minimal residual method) с ограничением числа итераций, причем требуемое число итераций, требуемых для решения уравнения (13), определяют по формуле: n=n0+λ·k,
где n - число итераций алгоритма обобщенных минимальных невязок, k - номер итерации в итерационной процедуре (11)-(13), n0 и λ - положительные целые числа, зависящие от точности начального приближения (11) и скорости сходимости итерационной процедуры (11)-(13),
общее число итераций алгоритма (11)-(13) определяют по принципу невязки (принцип Морозова).
5. Способ по п.4, в котором для решения уравнения
системы матрично-векторных уравнений используется метод регуляризации Тихонова, причем параметр регуляризации определяют по формуле
где α - параметр регуляризации, α0 - малый действительный параметр, зависящий от погрешности задания граничных условий обратной задачи электрокардиографии, р - положительный действительный параметр, зависящий от скорости сходимости итерационной процедуры, β - положительный действительный параметр, зависящий от точности начального приближения в итерационной процедуре, k - номер итерации.
6. Способ по п.4, в котором для решения уравнения
системы матрично-векторных уравнений используется регуляризирующий алгоритм на основе SVD-разложения матрицы уравнения с заменой нулями сингулярных чисел, меньших заданного положительного числа ε, причем параметр ε определяют согласно формуле
ε=ε0+β·p-(k/2),
где ε0 - малый действительный параметр, зависящий от погрешности задания граничных условий обратной задачи электрокардиографии;
р - положительный действительный параметр;
зависящий от скорости сходимости итерационной процедуры;
β - положительный действительный параметр, зависящий от точности начального приближения в итерационной процедуре;
k - номер итерации.
7. Способ по п.4, в котором для решения уравнения
системы матрично-векторных уравнений используется регуляризирующий алгоритм на основе итерационного метода обобщенных минимальных невязок (Generalized minimal residual method) с ограничением числа итераций, причем требуемое число итераций определяют по формуле
n=n0+λ·k,
где n - число итераций алгоритма;
k - номер итерации в общей итерационной процедуре;
n0 и λ - положительные целые числа, зависящие от точности начального приближения и скорости сходимости процедуры (11)-(13)
8. Способ по п.4, в котором уравнения системы матрично-векторных уравнений решаются на основе «быстрого мультипольного метода» (Fast Multipole Method).
РЕВИШВИЛИ А.Ш | |||
и др | |||
Верификация новой методики неинвазивного электрофизиологического исследования сердца, основанной на решении обратной задачи электрокардиографии | |||
Вестник аритмологии, 2008, №51, с.7-13 [он-лайн] [Найдено 2009.02.11] найдено из Интернет: http://www.sc-labs.m/doku.php/ru/articles/index | |||
ДЕНИСОВ A.M | |||
и др | |||
Применение метода |
Авторы
Даты
2011-04-27—Публикация
2008-11-27—Подача