Настоящее изобретение относится к способам определения теплофизических свойств твердых тел, например, горных пород.
Правильный учет значений теплофизических свойств горных пород, таких как теплопроводность, теплоемкость и температуропроводность, приобретает первостепенную важность при промышленном применении тепловых способов повышения нефтеотдачи, предполагающих предварительное моделирование процессов тепломассобмена в резервуаре (нефтяной пласт) и скважинах, а также определение теплового режима скважинного оборудования.
Предлагаемый способ бесконтактного определения теплофизических свойств твердых тел отличается от известных способов (см., например, патент RU 2153664 или патент RU 2011977) возможностью проведения измерений на коротких образцах произвольной формы, возможностью использования только одного эталона в эксперименте и расширением функциональных возможностей измерений за счет обеспечения измерений, кроме теплопроводности, также и объемной теплоемкости и повышения точности измерений за счет снижения систематической погрешности, появляющейся в существующих способах из-за приближенного учета кривизны поверхности образцов.
Целью изобретения является расширение функциональных возможностей за счет обеспечения измерений объемной теплоемкости и повышения точности измерений.
Предлагаемый способ бесконтактного определения теплофизических свойств твердых тел, в том числе и обладающих неоднородными свойствами, включает нагрев поверхности образца при движении блока нагрева относительно образца с последующим определением избыточных температур, по которым проводится определение теплофизических свойств, таких как теплопроводность и (или) температуропроводность. Способ может применяться для образцов произвольной формы, позволяя осуществлять измерения теплопроводности в широком диапазоне от 0,06 до 250 Вт/(м·К).
Способ измерений теплофизических свойств твердых тел заключается в нагреве поверхности эталонного образца - однородного образца фиксированных размеров с известными постоянными теплопроводностью и объемной теплоемкостью и поверхностей последовательно расположенных с эталоном изучаемых образцов твердых тел источником тепловой энергии (Попов Ю.А. Некоторые особенности методики массовых детальных исследований теплопроводности горных пород // Изв. ВУЗов. Геология и разведка, №4 - 1984, с.72-76.), движущимся с постоянной скоростью относительно эталона и изучаемых образцов твердых тел, измерении избыточных температур (т.е. разницы между температурой поверхности и начальной температурой) поверхностей эталона и изучаемых образцов твердых тел в точках на линии нагрева (линии на поверхности образца, по которой движется центр источника нагрева) и определении теплопроводности изучаемых образцов по результатам измерений избыточных температур на поверхностях эталона и изучаемых образцов.
При измерениях на стандартном керне, представляющем собой цилиндрическую колонку (столбик) горной породы, достаточно плотной, чтобы сохранять слоистую структуру, размером 30×30 мм, и использовании плоского эталонного образца обрабатывают результаты измерения избыточных температур для эталона и изучаемых образцов таким образом, что при помощи теоретического моделирования (изучение процесса при помощи теоретических моделей (в данном случае при помощи численного решения) физических процессов, сопровождающих процесс измерений, определяют различие избыточных температур для плоской и цилиндрической поверхностей, и вносят установленную поправку в измеренные избыточные температуры.
При измерениях на стандартном керне решают обратно-коэффициентную задачу теплопроводности (вычисление коэффициента теплопроводности или объемной теплоемкости по значению температуры в отдельных точках, Бек Дж., Блакуэлл Б., Сент-Клэр Ч., мл. / Некорректные обратные задачи теплопроводности: Пер. с англ. - М.: Мир, 1989. - 312 с.) и с использованием решения обратно-коэффициентной задачи теплопроводности определяют теплопроводность и объемную теплоемкость цилиндрических образцов стандартного керна.
При измерениях на плоских образцах решают обратно-коэффициентную задачу теплопроводности и с использованием решения обратно-коэффициентной задачи теплопроводности определяют теплопроводность и объемную теплоемкость плоских образцов.
При реализации способа эталонный и исследуемый образцы устанавливаются на стол. Лазер, используемый в качестве источника тепловой энергии, включается на нагрев и перемещается прямолинейно с постоянной скоростью (2-4 мм/с). Измерения температуры проводятся последовательно на поверхности эталона и образца. По решению обратной задачи теплопроводности для эталонного образца восстанавливается закон распределения тепловой энергии источника. По решению обратной задачи теплопроводности для образца восстанавливается значение коэффициента теплопроводности или объемной теплоемкости.
название | год | авторы | номер документа |
---|---|---|---|
Способ измерения теплофизических свойств материалов и установка для его осуществления с использованием пирометров | 2023 |
|
RU2807398C1 |
Способ измерения теплофизических свойств материалов и установка для его осуществления с использованием термовизоров | 2023 |
|
RU2807433C1 |
Способ измерения теплофизических свойств материалов и установка для его осуществления с использованием датчиков теплового потока | 2023 |
|
RU2811326C1 |
Способ определения теплофизических свойств материалов | 1982 |
|
SU1100549A2 |
СПОСОБ ОПРЕДЕЛЕНИЯ КОМПЛЕКСА ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ ТВЕРДЫХ МАТЕРИАЛОВ | 2008 |
|
RU2374631C2 |
УСТРОЙСТВО И СПОСОБ КОМПЛЕКСНОГО ОПРЕДЕЛЕНИЯ ОСНОВНЫХ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ ТВЕРДОГО ТЕЛА | 2013 |
|
RU2530473C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ КИНЕТИЧЕСКИХ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ АНИЗОТРОПНЫХ КОМПОЗИТНЫХ МАТЕРИАЛОВ | 2020 |
|
RU2753620C1 |
СПОСОБ ИДЕНТИФИКАЦИИ КОМПЛЕКСА ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ ТВЕРДЫХ МАТЕРИАЛОВ | 2005 |
|
RU2303777C2 |
Способ определения теплофизических характеристик твердых тел | 1989 |
|
SU1673941A1 |
СПОСОБ ИДЕНТИФИКАЦИИ КОМПЛЕКСА ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ ТВЕРДЫХ МАТЕРИАЛОВ ДЛЯ ОБНАРУЖЕНИЯ СКРЫТЫХ ОБЪЕКТОВ (МИН) В ГРУНТЕ | 2007 |
|
RU2357235C1 |
Способ включает нагрев поверхности эталонного образца и поверхностей последовательно расположенных с эталоном изучаемых образцов твердых тел источником тепловой энергии. Источник движется с постоянной скоростью относительно эталона и изучаемых образцов твердых тел. Осуществляют измерение избыточных температур поверхностей эталона и изучаемых образцов твердых тел в точках на линии нагрева и определение теплофизических свойств по величине избыточных температур. В способе используют образцы произвольной формы, при этом эталонный образец является однородным образцом фиксированных размеров. Посредством решения обратной задачи теплопроводности для эталона восстанавливают закон распределения тепловой энергии источника. Теплопроводность и объемную теплоемкость образцов определяют посредством решения обратно-коэффициентной задачи теплопроводности. Технический результат заключается в расширении функциональных возможностей. 1 з.п. ф-лы.
1. Способ бесконтактного определения теплофизических свойств твердых тел, включающий нагрев поверхности эталонного образца и поверхностей последовательно расположенных с эталоном изучаемых образцов твердых тел источником тепловой энергии, движущимся с постоянной скоростью относительно эталона и изучаемых образцов твердых тел, измерение избыточных температур поверхностей эталона и изучаемых образцов твердых тел в точках на линии нагрева и определение теплофизических свойств по величине избыточных температур, отличающийся тем, что используют образцы произвольной формы, при этом эталонный образец является однородным образцом фиксированных размеров, посредством решения обратной задачи теплопроводности для эталона восстанавливают закон распределения тепловой энергии источника, и теплопроводность и объемную теплоемкость образцов определяют посредством решения обратно-коэффициентной задачи теплопроводности.
2. Способ бесконтактного определения теплофизических свойств твердых тел, обладающих неоднородными свойствами по п.1, отличающийся тем, что в качестве изучаемого образца используют стандартный керн.
СПОСОБ ЭКСПРЕССНОГО ОПРЕДЕЛЕНИЯ ТЕПЛОПРОВОДНОСТИ ТВЕРДЫХ МАТЕРИАЛОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1999 |
|
RU2153664C1 |
СПОСОБ БЕСКОНТАКТНОГО ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ ХАРАКТЕРИСТИК МАТЕРИАЛОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1991 |
|
RU2011977C1 |
Способ определения теплопроводности материалов | 1984 |
|
SU1179186A1 |
Способ бесконтактного контроля теплофизических характеристик материалов | 1987 |
|
SU1481656A1 |
Авторы
Даты
2011-04-27—Публикация
2008-09-30—Подача