СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ЗАГОТОВОК ДИСКОВ ИЗ ГРАНУЛИРОВАННЫХ ВЫСОКОЛЕГИРОВАННЫХ НИКЕЛЕВЫХ СПЛАВОВ С ИСХОДНОЙ МИКРОКРИСТАЛЛИЧЕСКОЙ СТРУКТУРОЙ МИКРОДУПЛЕКС Российский патент 2011 года по МПК C22F1/10 

Описание патента на изобретение RU2419675C1

Предлагаемое изобретение относится к области металлургии и может быть использовано при изготовлении заготовок дисков для газотурбинных двигателей из гранулированных высоколегированных никелевых сплавов с исходной микрокристаллической структурой «микродуплекс».

Известен способ термообработки суперсплава на основе никеля, включающий операцию горячей ковки при температуре между температурой точки сольвуса γ'-фазы суперсплава минус 95°C и температурой точки сольвуса γ'-фазы суперсплава минус 45°C при скорости деформации от 5*10-5 до 2*10-2 с-1 и при степени деформации выше 0,1, после которой следует охлаждение детали, последующую промежуточную термообработку при температуре между температурой точки сольвуса γ'-фазы суперсплава минус 95°C и температурой точки сольвуса γ'-фазы суперсплава минус 30°C в течение 1-24 ч и термообработку, осуществляемую при температуре между температурой точки сольвуса γ'-фазы суперсплава плюс 5 С и температурой точки сольвуса γ'-фазы суперсплава плюс 25° в течение 1-4 ч. По второму варианту способа после горячей ковки проводят изотермическую выдержку при температуре между температурой точки сольвуса γ'-фазы суперсплава минус 95°C и температурой точки сольвуса γ'-фазы минус 30°C в течение 1-60 мин, начиная с момента, когда сплав еще находится при температуре ковки. По третьему варианту после изотермической выдержки осуществляют термообработку при температуре между температурой точки сольвуса γ'-фазы суперсплава минус 95°C и температурой точки сольвуса γ'-фазы минус 30°C в течение 1-24 ч. Способ позволяет повысить устойчивость сплавов к трещинообразованию при высоких температурах (патент JP 3926877, 8 22С 19/05, 06.06.2007 г.).

Недостатками этого способа является получение низкого уровня жаропрочности при повышенных температурах.

Известен способ и устройство для термической обработки дисков из жаропрочного сплава с двухфазной структурой, включающий термическую обработку для получения различных микроструктур на участках ступицы и обода диска. Устройство для термической обработки можно удалить из печи и разобрать, обеспечивая быструю принудительную воздушную или масляную закалку диска. При обработке на твердый раствор обод диска нагревают выше температуры сольвуса для получения крупнозернистой структуры, способствующей максимальной устойчивости к ползучести и распространению трещин при рабочей температуре диска. Для получения мелкозернистой структуры, обеспечивающей максимальные прочность и сопротивление малоцикловой усталости, на участке ступицы диска поддерживают температуру обработки на твердый раствор ниже температуры сольвус материала диска (патент US №6660110 ВА, 7 C22F 1/10, 09.12.2003 г.), прототип.

Недостатками этого способа является получение низкого уровня жаропрочности при повышенных (650-750°С) температурах в зоне обода заготовок за счет снижения скорости охлаждения на начальном этапе закалки из-за необходимости удаления специального устройства и освобождения поверхности материала для обеспечения требуемой скорости охлаждения. Снижение жаропрочности приводит к уменьшению длительности ресурсных характеристик и увеличению расхода дефицитных дорогостоящих материалов.

Предлагается способ термической обработки заготовок дисков из гранулированных высоколегированных никелевых сплавов с исходной микрокристаллической структурой «микродуплекс», заключающийся в нагреве под закалку при температуре на 15-35°C ниже температуры сольвуса γ'-фазы и выдержке при этой температуре в течение 4-5 часов, закалке и старении, при этом нагрев и выдержку заготовок дисков перед закалкой проводят с предварительным нагружением локальной периферийной зоны заготовки с деформационным воздействием, равным 0,03-0,10 кг/мм2, обеспечивающим в зоне нагружения режим ползучести, трансформацию структуры «микродуплекс» в матричную и увеличение жаропрочности при повышенных температурах.

Предлагаемый способ отличается от прототипа тем, что нагрев под закалку при температуре на 15-35°C ниже температуры сольвуса γ'-фазы ведут в условиях с предварительным нагружением локальной периферийной зоны заготовки со структурой «микродуплекс» с деформационным воздействием, равным 0,03-0,10 кг/мм2, обеспечивающим в зоне нагружения режим ползучести, трансформацию структуры «микродуплекс» в матричную и увеличение жаропрочности при повышенных температурах.

Технический результат - повышение жаропрочных свойств периферийной зоны заготовок дисков из гранулированных высоколегированных никелевых сплавов с исходной микрокристаллической структурой «микродуплекс», трансформированной в матричную, при температурах 650-750°C, что позволяет увеличить длительность ресурсных характеристик получаемых дисков и уменьшить расход дефицитных дорогостоящих материалов изготавливаемых деталей.

Предлагаемый способ позволяет управлять типом структуры и, главным образом, размером зерна, который является важнейшей функцией, определяющей комплекс механических свойств при эксплуатационных режимах. Путем создания в материале определенного состояния межфазных и межзеренных границ, управления долей протяженности того или иного их вида можно в значительной степени изменять характеристики механических свойств, в частности жаропрочность материала. Так, микрокристаллическая структура типа «микродуплекс» обладает высокими характеристиками прочности и сопротивлением малоцикловой усталости, с увеличением размера зерна и созданием матричной структуры повышается такой важный показатель конструкционной прочности жаропрочных сплавов, как жаропрочность, главным образом, в интервале рабочих температур 650-750°C.

Получение высоких значений жаропрочности в указанном температурном интервале, соответствующем рабочим температурам работы газотурбинного двигателя, позволяет увеличить длительность ресурсных характеристик получаемых дисков и уменьшить расход дефицитных дорогостоящих материалов изготавливаемых деталей.

Пример

Предварительно на заготовку диска из гранулированного высоколегированного сплава ВВ750ПД с исходной микрокристаллической структурой «микродуплекс» диаметром 550 мм помещали груз («деформирующую» шайбу) весом 1500 кг таким образом, чтобы обеспечить нагружение локальной периферийной зоны (обода) заготовки шириной 25 мм с деформационным воздействием, равным 0,038 кг/мм2, создающим в зоне нагружения режим высокотемпературной ползучести. Далее заготовку диска с исходной микрокристаллической структурой «микродуплекс» и «деформирующей» шайбой подвергали термической обработке при температуре 1180°C, что на 25°C ниже температуры сольвус γ'-фазы, и изотермической выдержке в течение 4,5 часов, затем принудительно охлаждали до комнатной температуры и подвергали двухступенчатому старению, сначала при температуре 830°C в течение 24 часов с охлаждением на воздухе, затем при температуре 700°C в течение 16 часов и охлаждением на воздухе.

В периферийной зоне (ободе) под действием «деформирующей» шайбы в процессе термической обработки произошла трансформация структуры из «микродуплекс» в матричную. В периферийной зоне на толщине 25 мм была сформирована однородная крупнокристаллическая структура (матричная) с размером зерна γ-фазы, равным 35-40 мкм, и объемной долей зерен γ'-фазы около 2%. В зоне ступицы была сохранена микрокристаллическая структура «микродуплекс» с размером зерна твердого раствора 15 мкм и зерен γ'-фазы 10 мкм и их объемной долей около 20%.

Сравнительные механические свойства заготовок из сплава ВВ750ПД, изготовленных по двум способам, известному и предлагаемому способу, с различными структурными параметрами показаны в таблице.

Таблица Способ изготовления Место испытания образцов Тип структуры Жаропрочность, σ 100 ч, кгс/мм2 650°C 750°C Известный - Прототип Ступица Мелкокристаллическая 70 - Обод Крупнокристаллическая 74 - Предлагаемый Ступица «Микродуплекс» 110 70 Обод Крупнокристаллическая 114 76

Из данных, представленных в таблице, видно, что по сравнению с известным способом предлагаемый способ позволил увеличить жаропрочность материала при температуре 650°C - на 35%. Также показано, что предлагаемый способ, позволяющий трансформировать структуру от «микродуплекс» до матричной (крупнокристаллической), обеспечивает увеличение жаропрочности в периферийной зоне (ободе) по сравнению со ступицей при температуре 650°C - на 4%; при температуре 750°C - на 9%.

Повышение жаропрочности периферийной зоны заготовок дисков в интервале рабочих температур газотурбинного двигателя, изготовленных в соответствии с предлагаемым способом, позволяет более чем на 50% увеличить длительность ресурсных характеристик и снизить расход дефицитных материалов на 15-20%.

Похожие патенты RU2419675C1

название год авторы номер документа
Способ поэтапной закалки заготовок из гранулируемых жаропрочных никелевых сплавов 2018
  • Бер Леонид Борисович
  • Казберович Алексей Михайлович
  • Ваулин Дмитрий Дмитриевич
  • Зенин Владимир Анатольевич
RU2697684C1
СПОСОБ ПОЛУЧЕНИЯ ИЗДЕЛИЙ ИЗ СЛОЖНОЛЕГИРОВАННЫХ ЖАРОПРОЧНЫХ НИКЕЛЕВЫХ СПЛАВОВ 2011
  • Гарибов Генрих Саркисович
  • Гриц Нина Михайловна
  • Востриков Алексей Владимирович
  • Федоренко Елизавета Александровна
RU2457924C1
СПОСОБ ПОЛУЧЕНИЯ ИЗДЕЛИЯ ИЗ СПЛАВА ТИПА ВВ751П С ВЫСОКОЙ ПРОЧНОСТЬЮ И ЖАРОПРОЧНОСТЬЮ 2011
  • Гарибов Генрих Саркисович
  • Гриц Нина Михайловна
  • Востриков Алексей Владимирович
  • Федоренко Елизавета Александровна
  • Казберович Алексей Михайлович
RU2453398C1
СПОСОБ ПОЛУЧЕНИЯ ИЗДЕЛИЙ ИЗ СЛОЖНОЛЕГИРОВАННЫХ ПОРОШКОВЫХ ЖАРОПРОЧНЫХ НИКЕЛЕВЫХ СПЛАВОВ 2012
  • Гарибов Генрих Саркисович
  • Гриц Нина Михайловна
  • Казберович Алексей Михайлович
  • Востриков Алексей Владимирович
  • Волков Александр Максимович
  • Федоренко Елизавета Александровна
  • Катуков Сергей Александрович
  • Шмелев Виталий Петрович
RU2516267C1
СПОСОБ ИЗГОТОВЛЕНИЯ КОЛЬЦЕВЫХ ЗАГОТОВОК ИЗ ВЫСОКОЛЕГИРОВАННЫХ ЖАРОПРОЧНЫХ СПЛАВОВ 2005
  • Баймурзин Риф Гайзуллович
  • Сельский Борис Евсеевич
  • Ценев Николай Кузьмич
RU2301718C2
СПОСОБ ПОЛУЧЕНИЯ ПОКОВОК ИЗ ЖАРОПРОЧНЫХ ГРАНУЛИРОВАННЫХ СПЛАВОВ 2014
  • Онищенко Анатолий Кондратьевич
  • Забельян Дмитрий Михайлович
  • Валиахметов Сергей Анатольевич
  • Фроленков Виталий Васильевич
RU2583564C1
СПОСОБ ИЗГОТОВЛЕНИЯ ДЕТАЛИ ИЗ СУПЕРСПЛАВА НА ОСНОВЕ НИКЕЛЯ И ДЕТАЛЬ, ПОЛУЧЕННАЯ УКАЗАННЫМ СПОСОБОМ 2010
  • Дево,Александр
RU2531217C2
СПОСОБ ИЗГОТОВЛЕНИЯ ОСЕСИММЕТРИЧНЫХ ДЕТАЛЕЙ И СПОСОБ ПОЛУЧЕНИЯ ЗАГОТОВОК ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) 1996
  • Утяшев Ф.З.
  • Кайбышев О.А.
  • Валитов В.А.
RU2119842C1
СПОСОБ ПОЛУЧЕНИЯ ПЕРЕМЕННОЙ СТРУКТУРЫ ПО СЕЧЕНИЮ ПОРОШКОВОЙ ЗАГОТОВКИ 2011
  • Гарибов Генрих Саркисович
  • Полькин Игорь Степанович
  • Гриц Нина Михайловна
  • Егоров Дмитрий Александрович
  • Востриков Алексей Владимирович
  • Федоренко Елизавета Александровна
  • Чудинов Алексей Алексеевич
  • Волков Александр Максимович
  • Драница Владимир Александрович
RU2455115C1
СПОСОБ ТЕРМООБРАБОТКИ ДЕТАЛЕЙ ИЗ ЖАРОПРОЧНЫХ НИКЕЛЕВЫХ СПЛАВОВ ДЛЯ ПОВЫШЕНИЯ СОПРОТИВЛЕНИЯ МАЛОЦИКЛОВОЙ УСТАЛОСТИ 2011
  • Гарибов Генрих Саркисович
  • Гриц Нина Михайловна
  • Шмелёв Виталий Петрович
  • Востриков Алексей Владимирович
  • Федоренко Елизавета Александровна
  • Казберович Алексей Михайлович
RU2455383C1

Реферат патента 2011 года СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ЗАГОТОВОК ДИСКОВ ИЗ ГРАНУЛИРОВАННЫХ ВЫСОКОЛЕГИРОВАННЫХ НИКЕЛЕВЫХ СПЛАВОВ С ИСХОДНОЙ МИКРОКРИСТАЛЛИЧЕСКОЙ СТРУКТУРОЙ МИКРОДУПЛЕКС

Изобретение относится к области металлургии и может быть использовано при изготовлении заготовок дисков для газотурбинных двигателей из гранулированных высоколегированных никелевых сплавов с исходной микрокристаллической структурой микродуплекс. Заявлен способ термической обработки заготовок дисков из гранулированных высоколегированных никелевых сплавов с исходной микрокристаллической структурой микродуплекс. Способ включает нагрев заготовок дисков под закалку при температуре на 15-35°С ниже температуры сольвуса γ'-фазы и выдержку при этой температуре в течение 4-5 часов, закалку и старение. Нагрев и выдержку заготовок дисков перед закалкой проводят с предварительным нагружением локальной периферийной зоны заготовки путем деформационного воздействия, равного 0,03-0,10 кг/мм2, для обеспечения в зоне нагружения режима ползучести, трансформации структуры микродуплекс в матричную и увеличения жаропрочности при повышенных температурах. Технический результат - повышение жаропрочных свойств периферийной зоны заготовок дисков, увеличение ресурса работы дисков и уменьшение расхода материалов. 1 табл.

Формула изобретения RU 2 419 675 C1

Способ термической обработки заготовок дисков из гранулированных высоколегированных никелевых сплавов с исходной микрокристаллической структурой микродуплекс, включающий нагрев заготовок дисков под закалку при температуре на 15-35°С ниже температуры сольвуса γ'-фазы и выдержку при этой температуре в течение 4-5 ч, закалку и старение, отличающийся тем, что нагрев и выдержку заготовок дисков перед закалкой проводят с предварительным нагружением локальной периферийной зоны заготовки путем деформационного воздействия, равного 0,03-0,10 кг/мм2, для обеспечения в зоне нагружения режима ползучести, трансформации структуры микродуплекс в матричную и увеличения жаропрочности при повышенных температурах.

Документы, цитированные в отчете о поиске Патент 2011 года RU2419675C1

US 6660110 B1, 09.12.2003
Способ раскатки дисков 1990
  • Баймурзин Риф Гайзуллович
  • Чумало Юрий Нестерович
  • Карпачева Вераника Евгеньевна
SU1770014A1
СПОСОБ ИЗГОТОВЛЕНИЯ ОСЕСИММЕТРИЧНЫХ ДЕТАЛЕЙ И СПОСОБ ПОЛУЧЕНИЯ ЗАГОТОВОК ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) 1996
  • Утяшев Ф.З.
  • Кайбышев О.А.
  • Валитов В.А.
RU2119842C1
СПОСОБ ИЗГОТОВЛЕНИЯ СЛОЖНОПРОФИЛЬНЫХ ОСЕСИММЕТРИЧНЫХ ДЕТАЛЕЙ ИЗ ТРУДНОДЕФОРМИРУЕМЫХ МНОГОФАЗНЫХ СПЛАВОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2000
  • Утяшев Ф.З.
  • Кайбышев О.А.
  • Плехов В.А.
  • Валитов В.А.
RU2187403C2

RU 2 419 675 C1

Авторы

Ваулин Дмитрий Дмитриевич

Власова Ольга Николаевна

Капуткин Ефим Яковлевич

Качанов Евгений Борисович

Ляхова Людмила Викторовна

Пилипенко Алексей Львович

Космачева Наталия Петровна

Даты

2011-05-27Публикация

2010-02-08Подача