СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛОГО ХОЛОДНОГО КАТОДА ГАЗОВОГО ЛАЗЕРА Российский патент 2011 года по МПК H01J1/30 H01J9/02 

Описание патента на изобретение RU2419913C1

Изобретение относится к области квантовой электроники и может быть использовано при производстве газоразрядных приборов, в частности холодных катодов моноблочных газовых лазеров.

Известен способ изготовления полых холодных катодов из алюминиевых сплавов [1].

В этом способе с помощью форвакуумного насоса создается давление воздуха 266 Па. Поджигают разряд с обеспечением на холодном катоде плотности тока 5…10 мА/см2. После обработки в течение 1…3 мин снимают напряжение и откачивают трубку с заготовкой. Затем снова наполняют трубку воздухом или кислородом, поджигают разряд. Указанные действия повторяют 4…5 раз, после чего откачивают трубку до давления 1,3×10-4 Па, обезгаживают трубку пламенем газовой горелки и наполняют трубку гелий-неоновой смесью.

Недостатком этого способа является низкая эффективность при изготовлении катодов для их использования в моноблочных газовых лазерах, где требуется значительная стабильность работы катода и долговечность в течение десятков тысяч часов. В указанном способе предлагается форсированная обработка катодной поверхности при плотностях тока, в 25…50 раз превышающих рабочую плотность тока во время эксплуатации лазера. При таких режимах обработки в кислороде требуются жесткие режимы контроля за параметрами проведения процесса окисления.

Недостатками этого способа являются непостоянство получения стабильных рабочих параметров катодов и необходимость использования токсичного бериллия, что обусловлено следующими причинами.

При окислении в атмосфере кислорода образующийся на пленке бериллия гидрид бериллия разлагается при температуре порядка 370К, при этом меняется его структура [2], что приводит к нестабильности защитных свойств окисла бериллия в условиях катодной бомбардировки в тлеющем разряде в газовом лазере.

Бериллий является веществом I класса опасности. Существуют технические сложности и ограничения, связанные с утилизацией отходов бериллия.

Задачей данного изобретения является упрощение технологии изготовления полого холодного катода газового лазера за счёт исключения термического окисления, уменьшения затрачиваемого технологического времени и необходимости использования высокотоксичного бериллия.

Указанная задача решается за счет того, что в известном способе изготовления полого катода газового лазера, включающем изготовление заготовки полого холодного катода, напыление на её внутреннюю поверхность эмиттирующей пленки и окисление пленки в кислороде, заготовку катода и эмиттирующую пленку выполняют из алюминия, проводят термообработку катода при давлении не выше 0,00133 Па при температуре 573…593 K в течение 30…40 мин с последующим ступенчатым окислением эмиттирующей пленки при нормальной температуре разрядом в кислороде при плотностях тока 0,15…0,9 мА/см2 и давлении кислорода 40 Па…80 Па в течение 45…55 мин, затем при плотности тока 0,15…0,3 мА/см2 и давлении кислорода 150…200 Па в течение 25…35 мин.

Выбор значения величины давления во время термообработки катода не выше 0,00133 Па основан на том, что при большем давлении на поверхности напыленной (плотной) окиси алюминия образуется дополнительная наружная (пористая) пленка окиси. В отличие от плотного внутреннего напыленного слоя наружный пористый слой окиси менее стоек к катодному распылению в условиях тлеющего разряда. Поэтому требуется не допускать образования пористого окисного слоя на поверхности пленки окиси алюминия на стадии термообработки, что достигается проведением указанного процесса при пониженном давлении.

При термообработке температура и время вжигания напыленной пленки алюминия для обеспечения ее высокой адгезии к заготовке катода выбраны исходя из экспериментальных данных. При температуре менее 573 К не подтвержден факт эффективного вжигания пленки алюминия; при этом окись алюминия, образующаяся на напыленной пленке во время нахождения заготовки катода на атмосфере при межоперационных переходах, имеет плотную аморфную структуру. При температуре более 593 К идет неконтролируемая кристаллизация и частичное растрескивание рыхлого наружного слоя. Это приводит к ухудшению структуры поверхности перед созданием защитной окисной пленки в тлеющем разряде.

Параметры обработки полого холодного катода в тлеющем разряде в кислороде выбраны следующим образом. Известно, что во время окисления напыленной пленки алюминия при давлении кислорода выше 0,00133 Па не происходит существенного влияния концентрации кислорода на скорость окисления алюминия [4]. При давлении кислорода в диапазоне 40…66 Па рост окисной пленки является повторяемым и прогнозируемым во времени, при этом структура пленки оптимальна для обеспечения долговечности катода при эксплуатации в составе лазера в течение десятков тысяч часов. Времена процесса создания защитной окисной пленки в тлеющем разряде и величины плотности тока разряда подобраны экспериментальным путем с целью получения оптимального значения толщины защитного окисного слоя.

Пример

На внутреннюю поверхность алюминиевой заготовки полого холодного катода с площадью внутренней поверхности 9 см2 напыляют катодную пленку особо чистого алюминия чистоты не ниже 99,995%.

Проводят дополнительную термообработку заготовки катода вжиганием катодной пленки для увеличения адгезии напыленного покрытия при давлении 0,00133 Па и температуре 573 К в течение 35 минут.

Монтируют заготовку катода в стеклянный технологический прибор.

Обезгаживающий отжиг технологического прибора проводят в вакууме 0,00133 Па при температуре 573 К в течение 120 минут.

Напаивают макет по общепринятой вакуумной технологии на высоковакуумный откачной пост. Па откачном посту перед формированием на напыленной пленке алюминия защитной пленки окиси алюминия производят ионную очистку внутренней поверхности катода в тлеющем разряде неона. Формируют окисную пленку в среде кислорода при температуре 293 К при токах разряда от 2 до 8 мА (плотность тока от 0,22 до 0,89 мА/см2), давлении кислорода 40 Па и суммарном времени окисления 50 минут (см. таблицу). Заканчивают процесс получения защитных свойств окисной пленки алюминия обработкой катода в тлеющем разряде кислорода при плотности тока 0,28 мА/см2 и давлении 160 Па в течение 30 минут.

Таблица Кислород, давление 40 Па Ток разряда, мА Плотность тока, мА/см2 Время обработки, мин 2,0 0,22 10 4,0 0,44 10 8,0 0,89 30

Таким образом, применение предложенного способа упрощает технологию изготовления холодного катода газового лазера, уменьшает затрачиваемое технологическое время более чем на 50%, а также исключает необходимость использования высокотоксичного бериллия.

Источники информации

1. Патент США №3860310.

2. Папиров И. И. Окисление и защита бериллия. - М.: Металлургия, 1968. - 120 с.

3. Макарычев Ю.Б., Акимов А. Г. Исследование механизма окисления алюминия в кислороде и парах воды // Поверхность. 1988. - №12. - С.94-99.

Похожие патенты RU2419913C1

название год авторы номер документа
СПОСОБ СОЗДАНИЯ АНОДНОЙ ОКИСНОЙ ПЛЁНКИ ХОЛОДНОГО КАТОДА ГАЗОВОГО ЛАЗЕРА В ТЛЕЮЩЕМ РАЗРЯДЕ ПОСТОЯННОГО ТОКА 2014
  • Хворостов Валентин Иванович
  • Голяев Юрий Дмитриевич
  • Балин Василий Андреевич
  • Хворостова Надежда Николаевна
RU2581610C1
Способ изготовления окисной пленки холодного катода газового лазера в тлеющем разряде постоянного тока 2019
  • Колбас Юрий Юрьевич
  • Сухов Евгений Викторович
  • Грушин Михаил Евгеньевич
  • Голяев Юрий Дмитриевич
RU2713915C1
ТЕХНОЛОГИЧЕСКИЙ ПРИБОР ДЛЯ ОБРАБОТКИ ПОЛОГО ХОЛОДНОГО КАТОДА В ГАЗОВОМ РАЗРЯДЕ 2013
  • Хворостов Валентин Иванович
  • Голяев Юрий Дмитриевич
  • Хворостова Надежда Николаевна
  • Филатов Евгений Иванович
  • Минаева Ольга Николаевна
RU2525856C1
СПОСОБ ОПРЕДЕЛЕНИЯ ТОЛЩИНЫ ОКИСНОЙ ПЛЁНКИ АЛЮМИНИЯ В ПРОЦЕССЕ АНОДНОГО ОКИСЛЕНИЯ ХОЛОДНОГО КАТОДА В ТЛЕЮЩЕМ РАЗРЯДЕ КИСЛОРОДА 2016
  • Хворостов Валентин Иванович
  • Балин Василий Андреевич
  • Панова Нонна Юрьевна
  • Воронова Ирина Леонидовна
  • Вавакин Владимир Николаевич
RU2627945C1
СПОСОБ ИОННО-ПЛАЗМЕННОЙ ОЧИСТКИ ВНУТРЕННЕЙ ПОВЕРХНОСТИ РЕЗОНАТОРА ГАЗОВОГО ЛАЗЕРА 2014
  • Хворостов Валентин Иванович
  • Голяев Юрий Дмитриевич
  • Хворостова Надежда Николаевна
RU2562615C1
СТРУКТУРА МЕТАЛЛ-ДИЭЛЕКТРИК-ПОЛУПРОВОДНИК НА ОСНОВЕ СОЕДИНЕНИЙ AB И СПОСОБ ЕЕ ФОРМИРОВАНИЯ 2010
  • Кеслер Валерий Геннадьевич
  • Ковчавцев Анатолий Петрович
  • Гузев Александр Александрович
  • Панова Зоя Васильевна
RU2420828C1
Способ изготовления МДП-структур на основе InAs 2015
  • Терещенко Олег Евгеньевич
  • Валишева Наталья Александровна
  • Девятова Светлана Федоровна
  • Аксенов Максим Сергеевич
RU2611690C1
СПОСОБ КОНТРОЛЯ ГЕРМЕТИЧНОСТИ ОТСОЕДИНЕННЫХ ОТ ВАКУУМНОГО ПОСТА МОНОБЛОЧНЫХ ГАЗОВЫХ ЛАЗЕРОВ МЕТОДОМ ЭМИССИОННОГО СПЕКТРАЛЬНОГО АНАЛИЗА 2013
  • Маш Лариса Давыдовна
  • Симоненко Елена Владимировна
  • Сухов Евгений Викторович
  • Филатов Евгений Иванович
RU2541707C2
СПОСОБ ПОЛУЧЕНИЯ ОКИСНЫХ ПЛЕНОК 1991
  • Федосенко Николай Николаевич[By]
  • Тишков Николай Иванович[By]
  • Пенязь Владимир Александрович[By]
  • Шолох Владимир Федорович[By]
  • Якушева Татьяна Львовна[By]
RU2110604C1
СПОСОБ ИЗГОТОВЛЕНИЯ ХОЛОДНОГО КАТОДА ГЕЛИЙ-НЕОНОВОГО ЛАЗЕРА 2015
  • Крютченко Олег Николаевич
  • Чиркин Михаил Викторович
  • Молчанов Алексей Владимирович
RU2589731C1

Реферат патента 2011 года СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛОГО ХОЛОДНОГО КАТОДА ГАЗОВОГО ЛАЗЕРА

Изобретение относится к области квантовой электроники и может быть использовано при производстве газоразрядных приборов, в частности холодных катодов моноблочных газовых лазеров. Способ изготовления полого холодного катода газового лазера, включающий изготовление заготовки, напыление на ее внутреннюю поверхность эмитирующей пленки и окисление ее в кислороде, в котором заготовку катода и эмитирующую пленку выполняют из алюминия, проводят термообработку катода при давлении не выше 0,00133 Па при температуре 573…593 К в течение 30…40 мин с последующим ступенчатым окислением эмитирующей пленки при нормальной температуре разрядом в кислороде при плотностях тока 0,15…0,9 мА/см и давлении кислорода 40 Па…80 Па в течение 45…55 мин, затем при плотности тока 0,15…0,3 мА/см2 и давлении кислорода 150…200 Па в течение 25…35 мин. Технический результат - упрощение технологии за счет исключения термического окисления, уменьшения затрачиваемого технологического времени и необходимости использования высокотоксичного бериллия. 1 табл.

Формула изобретения RU 2 419 913 C1

Способ изготовления полого холодного катода газового лазера, включающий изготовление заготовки катода, напыление на ее внутреннюю поверхность эмиттирующей пленки и окисление ее в кислороде, отличающийся тем, что заготовку катода и эмигрирующую пленку выполняют из алюминия, проводят термообработку катода при давлении не выше 0,00133 Па при температуре 573…593К в течение 30…40 мин с последующим ступенчатым окислением эмиттирующей пленки при нормальной температуре разрядом в кислороде при плотностях тока 0,15…0,9 мА/см и давлении кислорода 40…80Па в течение 45…55 мин, затем при плотности тока 0,15…0,3 мА/см2 и давлении кислорода 150…200 Па в течение 25…35 мин.

Документы, цитированные в отчете о поиске Патент 2011 года RU2419913C1

US 3860310 A, 14.01.1975
СПОСОБ ИЗГОТОВЛЕНИЯ АКТИВНОГО ЭЛЕМЕНТА ГЕЛИЙ-НЕОНОВОГО ЛАЗЕРА С ХОЛОДНЫМ КАТОДОМ 2001
  • Киселева Л.И.
  • Крютченко О.Н.
  • Степанов В.А.
  • Чиркин М.В.
RU2199789C2
RU 2194328 C1, 10.12.2002
СПОСОБ ИЗГОТОВЛЕНИЯ КАТОДА ДЛЯ ГАЗОРАЗРЯДНОЙ ИНДИКАТОРНОЙ ПАНЕЛИ 1993
  • Соколов В.М.
  • Сосновская Л.Г.
  • Журавлев С.Н.
  • Покрывайло А.Б.
  • Моос Е.Н.
  • Митрофанов А.Е.
  • Старынина Т.Г.
  • Самородов В.Г.
RU2056662C1
JP 2000251616 A, 14.09.2000
WO 2008069243 A1, 12.06.2008.

RU 2 419 913 C1

Авторы

Фарштендикер Виктор Львович

Пролейко Эсфирь Павловна

Пузанов Александр Гаврилович

Хворостов Валентин Иванович

Минаева Ольга Николаевна

Даты

2011-05-27Публикация

2010-03-03Подача