СОРБЕНТ СЕРОВОДОРОДА Российский патент 2011 года по МПК B01J20/02 B82B3/00 

Описание патента на изобретение RU2420351C1

Изобретение относится к получению сорбента для поглощения сероводорода при сухой очистке газов, в частности сорбента сероводорода, состоящего из наночастиц комплексного соединения общей формулы MgCl2·ZnCl2·nEt2O (где Et2O - диэтиловый эфир, n=1-4) размером (толщиной слоя) (2-100)×10-9 м на любом твердом носителе (субстрате).

Известен пористый сорбент сероводорода, полученный путем совместного размола твердых оксидов железа с активатором-порообразователем, например хлористым аммонием, в количестве 5-15% от веса основной составляющей и связующим - лингосульфатом натрия в количестве 15-30% от веса основной составляющей. Из смеси изготавливают таблетки либо гранулы, которые подвергают термообработке в атмосфере водорода, сначала в политермических условиях до 500-650°С в пределах 1 ч, а затем в изотермических условиях при 500-650°С в течение 60-90 мин. Данный сорбент за счет пористости имеет повышенную активность, однако недостаточную для изготовления компактных фильтров для очистки газов от сероводорода. (Босняцкий Г.П. и др. Способ получения сорбента для сероводорода. Заявка №95102800 от 27.02.1995 г., опубл. 10.01.1997 г.) (аналог).

Наиболее близким к предлагаемому изобретению является сорбент для поглощения аммиака и сероводорода, полученный пропиткой активного угля сульфатом меди и термообработкой гранул. Термообработку сорбента ведут при 100-170°С в печи «кипящего слоя» после пропитки, а пропитывают уголь раствором концентрации 15-25 масс.% при температуре 80-95°С и объемном соотношении сорбента и раствора 1:0,25÷0,45. Сорбент за счет высокой пористости активного угля имеет повышенную активность, однако активности и сероемкости сорбента недостаточно для изготовления компактных фильтров для очистки газов от сероводорода (Внучкова В.А. и др. Способ получения сорбента. Заявка №96118528/25 от 17.09.1996 г.) (прототип).

Задачей предлагаемого изобретения является получение сорбента для поглощения сероводорода. Решение поставленной задачи достигается тем, что на поверхность твердых носителей (например, силикагеля, оксида железа и др.) наносят слой наночастиц комплексного соединения общей формулы MgCl2·ZnCl2·nEt2O (где Et2O - диэтиловый эфир, n=1-4) размером (толщиной слоя) (2-100)×10-9 м. Процесс ведут следующим образом. В типичном опыте 64 г силикагеля марки №3 или марки КСКГ, используемого в качестве носителя, дробят в фарфоровой ступке и отбирают фракции размером 1,0-1,6 мм, к нему добавляют 100 мл 3-15% раствора комплексного соединения общей формулы MgCl2·ZnCl2·nEt2O (где Et2O - диэтиловый эфир, n=1-4). Смесь перемешивают и выпаривают на водяной бане при температуре 50°С. Сухой реагент в токе азота нагревают при перемешивании до температуры 170°С со скоростью нагрева 50-80°С/мин.

Полученный таким образом сорбент подвергают испытанию на емкость сероводорода до проскока. Изучение емкости сероводорода до проскока проводили в стеклянной трубке диаметром 7,5 мм, длиной 14 см. Различные образцы реагента помещали в стеклянную трубку. Через стеклянную трубку пропускали газовую смесь, состоящую из 5% сероводорода и 95% азота при атмосферном давлении со скоростью 0,6 см3/с. На выходе отбирали пробу газа для анализа концентрации сероводорода по ГОСТ 11382-76. Проскоком сероводорода считали концентрацию сероводорода на выходе выше 0,01% по объему.

В таблице 1 приведены данные по изучению различных сорбентов.

Таблица 1 Образцы реагента Время работы до проскока, мин 1 2 ДИАС-25 (фракция 1,0-1,6 мм) 53 Асорбент АГС-60 (фракция 1,0-1,6 мм) 31 КАТАЛИЗАТОР - АПС-Т (фракция 1,0-1,6 мм) 19 Адсорбент КАС-50 (фракция 1,0-1,6 мм) 17 Наночастицы комплексного соединения формулы MgCl2·ZnCl2·nEt2O (где n=1-4) на силикагеле (фракция 1,0-1,6 мм) 115 Наночастицы комплексного соединения формулы MgCl2·ZnCl2·nEt2O (где n=1-4) на оксиде железа (III) (фракция 1,0-1,6 мм) 92

Из таблицы 1 видно, что при одинаковых условиях проведения эксперимента сорбент, состоящий из наночастиц комплексного соединения общей формулы MgCl2·ZnCl2·nEt2O (где Et2O - диэтиловый эфир, n=1-4) на разных твердых носителях, способен дольше сорбировать сероводород из газов, что говорит о его более высокой активности и емкости по отношению к сероводороду.

Для выбора оптимального размера частиц комплексного соединения общей формулы MgCl2·ZnCl2·nEt2O (где Et2O - диэтиловый эфир, n=1-4) на силикагеле в качестве носителя сорбент с различным размером частиц испытали на активность поглощения сероводорода. Образцы силикагеля с частицами комплексного соединения на поверхности общей формулы MgCl2·ZnCl2·nEt2O (где Et2O - диэтиловый эфир, n=1-4) различного размера помещали в стеклянную трубку. Через стеклянную трубку пропускали газовую смесь, состоящую из 5% сероводорода и 95% азота при атмосферном давлении со скоростью 0,6 см3/с. Через 60 минут пропускания газа выходе отбирали пробу газа для анализа концентрации сероводорода на газовом хроматографе.

Размеры частиц определяли на электронном растровом (сканирующем) микроскопе мод. JSM 840.

В таблице 2 приведены данные по изучению концентрации сероводорода на выходе из трубки с реагентом.

Таблица 2 Размер частицы, 10-9 м Концентрация сероводорода, % об. Размер частицы, 10-9 м Концентрация сероводорода, % об. 1 2 3 4 50 0,002 250 0,0041 75 0,0007 470 0,0051 90 0,005 680 0,0073 100 0,0014 860 0,0097 120 0,0035 1000 0,0115

Из таблицы 2 видно, что для частиц комплексного соединения общей формулы MgCl2·ZnCl2·nEt2O (где Et2O - диэтиловый эфир, n=1-4) на поверхности силикагеля для сорбции сероводорода оптимальным размером является (2-100)×10-9 м.

Таким образом, предлагаемый сорбент сероводорода, полученный при использовании наночастиц комплексного соединения общей формулы MgCl2·ZnCl2·nEt2O (где Et2O - диэтиловый эфир, n=1-4) размерами (толщиной слоя) (2-100)×10-9 м на любом твердом носителе (субстрате), позволяет дольше сорбировать сероводород из газов, что свидетельствует о его более высокой активности и емкости по отношению к сероводороду.

Похожие патенты RU2420351C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ СЕРЫ КАТАЛИТИЧЕСКИМ ОКИСЛЕНИЕМ СЕРОВОДОРОДА 2012
  • Михайлов Юрий Михайлович
  • Гатина Роза Фатыховна
  • Омаров Залимхан Курбанович
RU2533140C2
ТРИХЛОРЦИНКАТ ЛИТИЯ 2008
  • Михайлов Юрий Михайлович
  • Гатина Роза Фатыховна
  • Хацринов Алексей Ильич
  • Климович Ольга Викторовна
  • Омаров Залимхан Курбанович
  • Пелитминцева Елена Геннадьевна
RU2395453C2
СОРБЕНТ СЕРОВОДОРОДА 2013
  • Михайлов Юрий Михайлович
  • Гатина Роза Фатыховна
  • Омаров Залимхан Курбанович
  • Астахов Сергей Васильевич
  • Хацринов Алексей Ильич
  • Голубчиков Максим Алексеевич
  • Кривошеев Евгений Анатольевич
  • Ахметов Радик Фагилович
  • Хакимуллина Аида Ильдаровна
RU2533144C1
СПОСОБ ПОЛУЧЕНИЯ ВОДОУСТОЙЧИВОГО АММОНАЛА 2010
  • Михайлов Юрий Михайлович
  • Гатина Роза Фатыховна
  • Хацринов Алексей Ильич
  • Климович Ольга Викторовна
  • Омаров Залимхан Курбанович
  • Ситдикова Алина Раисовна
  • Рыбин Вадим Евгеньевич
  • Меркин Александр Александрович
RU2456259C2
СПОСОБ ПОЛУЧЕНИЯ ВОДОУСТОЙЧИВОГО АММОНИТА 2010
  • Михайлов Юрий Михайлович
  • Гатина Роза Фатыховна
  • Хацринов Алексей Ильич
  • Климович Ольга Викторовна
  • Омаров Залимхан Курбанович
  • Ситдикова Алина Раисовна
  • Рыбин Вадим Евгеньевич
  • Меркин Александр Александрович
RU2457194C2
ПОЛИХЛОРЦИНКАТЫ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ 2008
  • Михайлов Юрий Михайлович
  • Гатина Роза Фатыховна
  • Хацринов Алексей Ильич
  • Сопин Владимир Фёдорович
  • Булидоров Виктор Васильевич
  • Шакурская Оксана Николаевна
  • Климович Ольга Викторовна
  • Омаров Залимхан Курбанович
RU2395458C2
СОРБЕНТ СЕРОВОДОРОДА 2012
  • Михайлов Юрий Михайлович
  • Гатина Роза Фатыховна
  • Омаров Залимхан Курбанович
  • Голубчиков Максим Алексеевич
  • Кривошеев Евгений Анатольевич
  • Ахметов Радик Фагилович
  • Таразова Эльвира Наилевна
RU2532517C2
ПОЛИХЛОРАЛЮМИНАТЫ ЛИТИЯ 2008
  • Михайлов Юрий Михайлович
  • Гатина Роза Фатыховна
  • Хацринов Алексей Ильич
  • Сопин Владимир Фёдорович
  • Булидоров Виктор Васильевич
  • Климович Ольга Викторовна
  • Омаров Залимхан Курбанович
RU2395452C2
СПОСОБ ПОЛУЧЕНИЯ ВОДОУСТОЙЧИВОГО НИТРАТА АММОНИЯ (АММИАЧНОЙ СЕЛИТРЫ) 2010
  • Михайлов Юрий Михайлович
  • Гатина Роза Фатыховна
  • Хацринов Алексей Ильич
  • Климович Ольга Викторовна
  • Омаров Залимхан Курбанович
  • Кривошеева Алина Раисовна
  • Лапинская Татьяна Николаевна
RU2480411C2
СПОСОБ УТИЛИЗАЦИИ СЕРОВОДОРОДА КАТАЛИТИЧЕСКИМ ОКИСЛЕНИЕМ В ЭЛЕМЕНТАРНУЮ СЕРУ 2013
  • Михайлов Юрий Михайлович
  • Гатина Роза Фатыховна
  • Омаров Залимхан Курбанович
  • Астахов Сергей Васильевич
  • Хацринов Алексей Ильич
  • Голубчиков Максим Алексеевич
  • Кривошеев Евгений Анатольевич
  • Ахметов Радик Фагилович
  • Гилязова Эльвира Фаритовна
RU2552443C2

Реферат патента 2011 года СОРБЕНТ СЕРОВОДОРОДА

Изобретение относится к химической технологии, преимущественно к сорбентам сероводорода, которые могут быть использованы для сухой очистки газов от сероводорода. Предложен сорбент сероводорода, содержащий в качестве основной составляющей наночастицы комплексного соединения MgCl2·ZnCl2·nEt2O, где n=1-4, размещенные в виде слоя толщиной (2-100)×10-9 м на твердом носителе. Сорбент обладает повышенной активностью в отношении сероводорода. 2 табл.

Формула изобретения RU 2 420 351 C1

Сорбент сероводорода, отличающийся тем, что представляет собой наночастицы комплексного соединения общей формулы MgCl2·ZnCl2·nEt2O, где Et2O, n=1-4, в виде слоя толщиной (2-100)·10-9 м на любом твердом носителе.

Документы, цитированные в отчете о поиске Патент 2011 года RU2420351C1

СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА ДЛЯ ОЧИСТКИ ГАЗОВ ОТ СЕРНИСТЫХ СОЕДИНЕНИЙ 2002
  • Ермина З.Е.
  • Шаркин Г.А.
  • Мурашов Н.И.
  • Шаркина В.И.
  • Горожанкин Э.В.
  • Травин Л.В.
RU2225757C1
СОРБЕНТ ДЛЯ ОЧИСТКИ ГАЗОВ ОТ СЕРНИСТЫХ СОЕДИНЕНИЙ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ 2005
  • Целютина Марина Ивановна
  • Резниченко Ирина Дмитриевна
  • Алиев Рамиз Рза Оглы
  • Волчатов Леонид Геннадьевич
  • Посохова Ольга Михайловна
  • Андреева Татьяна Ивановна
RU2311226C2
Способ получения поглотителя для очистки газов от сернистых соединений 1979
  • Иконников Владимир Григорьевич
  • Обысов Анатолий Васильевич
  • Тительман Леонид Исакович
  • Данциг Марьяна Львовна
  • Соболевский Виктор Станиславович
  • Широков Юрий Георгиевич
  • Фурмер Юрий Владимирович
  • Семенова Татьяна Алексеевна
  • Хруцкий Олег Павлович
  • Повелко Виктор Захарович
SU874134A1
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА ДЛЯ СЕРОВОДОРОДА 1995
  • Босняцкий Г.П.
  • Брюквин В.А.
  • Дейнека С.С.
  • Пятакова М.И.
  • Рогальский В.М.
RU2088329C1
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА 1996
  • Внучкова В.А.
  • Солин М.Н.
  • Голубев В.П.
  • Лейф В.Э.
  • Зимин Н.А.
  • Хазанов А.А.
  • Тамамьян А.Н.
RU2098177C1
КОМПОЗИЦИЯ СОРБЕНТА, СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИИ СОРБЕНТА И ПРИМЕНЕНИЕ КОМПОЗИЦИИ СОРБЕНТА 1996
  • Геанеш П. Каре
  • Доналд Х. Кубисек
RU2160630C2
ПОГЛОТИТЕЛЬНЫЙ РАСТВОР ДЛЯ ОЧИСТКИ ГАЗОВ ОТ СЕРОВОДОРОДА 1996
  • Юркив Николай Иванович
  • Салех Ахмед Ибрагим Шакер
  • Цигельницкий Игорь Георгиевич
RU2109553C1
US 7416655 А, 26.08.2008
US 5234884 А, 10.08.1993
US 4783433 А, 08.11.1988.

RU 2 420 351 C1

Авторы

Михайлов Юрий Михайлович

Гатина Роза Фатыховна

Хацринов Алексей Ильич

Омаров Залимхан Курбанович

Климович Ольга Викторовна

Кривошеев Евгений Анатольевич

Ситдикова Алина Раисовна

Даты

2011-06-10Публикация

2009-10-09Подача