Изобретение относится к получению сорбента для поглощения сероводорода при сухой очистке газов, в частности сорбента сероводорода, состоящего из наночастиц комплексного соединения общей формулы MgCl2·ZnCl2·nEt2O (где Et2O - диэтиловый эфир, n=1-4) размером (толщиной слоя) (2-100)×10-9 м на любом твердом носителе (субстрате).
Известен пористый сорбент сероводорода, полученный путем совместного размола твердых оксидов железа с активатором-порообразователем, например хлористым аммонием, в количестве 5-15% от веса основной составляющей и связующим - лингосульфатом натрия в количестве 15-30% от веса основной составляющей. Из смеси изготавливают таблетки либо гранулы, которые подвергают термообработке в атмосфере водорода, сначала в политермических условиях до 500-650°С в пределах 1 ч, а затем в изотермических условиях при 500-650°С в течение 60-90 мин. Данный сорбент за счет пористости имеет повышенную активность, однако недостаточную для изготовления компактных фильтров для очистки газов от сероводорода. (Босняцкий Г.П. и др. Способ получения сорбента для сероводорода. Заявка №95102800 от 27.02.1995 г., опубл. 10.01.1997 г.) (аналог).
Наиболее близким к предлагаемому изобретению является сорбент для поглощения аммиака и сероводорода, полученный пропиткой активного угля сульфатом меди и термообработкой гранул. Термообработку сорбента ведут при 100-170°С в печи «кипящего слоя» после пропитки, а пропитывают уголь раствором концентрации 15-25 масс.% при температуре 80-95°С и объемном соотношении сорбента и раствора 1:0,25÷0,45. Сорбент за счет высокой пористости активного угля имеет повышенную активность, однако активности и сероемкости сорбента недостаточно для изготовления компактных фильтров для очистки газов от сероводорода (Внучкова В.А. и др. Способ получения сорбента. Заявка №96118528/25 от 17.09.1996 г.) (прототип).
Задачей предлагаемого изобретения является получение сорбента для поглощения сероводорода. Решение поставленной задачи достигается тем, что на поверхность твердых носителей (например, силикагеля, оксида железа и др.) наносят слой наночастиц комплексного соединения общей формулы MgCl2·ZnCl2·nEt2O (где Et2O - диэтиловый эфир, n=1-4) размером (толщиной слоя) (2-100)×10-9 м. Процесс ведут следующим образом. В типичном опыте 64 г силикагеля марки №3 или марки КСКГ, используемого в качестве носителя, дробят в фарфоровой ступке и отбирают фракции размером 1,0-1,6 мм, к нему добавляют 100 мл 3-15% раствора комплексного соединения общей формулы MgCl2·ZnCl2·nEt2O (где Et2O - диэтиловый эфир, n=1-4). Смесь перемешивают и выпаривают на водяной бане при температуре 50°С. Сухой реагент в токе азота нагревают при перемешивании до температуры 170°С со скоростью нагрева 50-80°С/мин.
Полученный таким образом сорбент подвергают испытанию на емкость сероводорода до проскока. Изучение емкости сероводорода до проскока проводили в стеклянной трубке диаметром 7,5 мм, длиной 14 см. Различные образцы реагента помещали в стеклянную трубку. Через стеклянную трубку пропускали газовую смесь, состоящую из 5% сероводорода и 95% азота при атмосферном давлении со скоростью 0,6 см3/с. На выходе отбирали пробу газа для анализа концентрации сероводорода по ГОСТ 11382-76. Проскоком сероводорода считали концентрацию сероводорода на выходе выше 0,01% по объему.
В таблице 1 приведены данные по изучению различных сорбентов.
Из таблицы 1 видно, что при одинаковых условиях проведения эксперимента сорбент, состоящий из наночастиц комплексного соединения общей формулы MgCl2·ZnCl2·nEt2O (где Et2O - диэтиловый эфир, n=1-4) на разных твердых носителях, способен дольше сорбировать сероводород из газов, что говорит о его более высокой активности и емкости по отношению к сероводороду.
Для выбора оптимального размера частиц комплексного соединения общей формулы MgCl2·ZnCl2·nEt2O (где Et2O - диэтиловый эфир, n=1-4) на силикагеле в качестве носителя сорбент с различным размером частиц испытали на активность поглощения сероводорода. Образцы силикагеля с частицами комплексного соединения на поверхности общей формулы MgCl2·ZnCl2·nEt2O (где Et2O - диэтиловый эфир, n=1-4) различного размера помещали в стеклянную трубку. Через стеклянную трубку пропускали газовую смесь, состоящую из 5% сероводорода и 95% азота при атмосферном давлении со скоростью 0,6 см3/с. Через 60 минут пропускания газа выходе отбирали пробу газа для анализа концентрации сероводорода на газовом хроматографе.
Размеры частиц определяли на электронном растровом (сканирующем) микроскопе мод. JSM 840.
В таблице 2 приведены данные по изучению концентрации сероводорода на выходе из трубки с реагентом.
Из таблицы 2 видно, что для частиц комплексного соединения общей формулы MgCl2·ZnCl2·nEt2O (где Et2O - диэтиловый эфир, n=1-4) на поверхности силикагеля для сорбции сероводорода оптимальным размером является (2-100)×10-9 м.
Таким образом, предлагаемый сорбент сероводорода, полученный при использовании наночастиц комплексного соединения общей формулы MgCl2·ZnCl2·nEt2O (где Et2O - диэтиловый эфир, n=1-4) размерами (толщиной слоя) (2-100)×10-9 м на любом твердом носителе (субстрате), позволяет дольше сорбировать сероводород из газов, что свидетельствует о его более высокой активности и емкости по отношению к сероводороду.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ СЕРЫ КАТАЛИТИЧЕСКИМ ОКИСЛЕНИЕМ СЕРОВОДОРОДА | 2012 |
|
RU2533140C2 |
ТРИХЛОРЦИНКАТ ЛИТИЯ | 2008 |
|
RU2395453C2 |
СОРБЕНТ СЕРОВОДОРОДА | 2013 |
|
RU2533144C1 |
СПОСОБ ПОЛУЧЕНИЯ ВОДОУСТОЙЧИВОГО АММОНАЛА | 2010 |
|
RU2456259C2 |
СПОСОБ ПОЛУЧЕНИЯ ВОДОУСТОЙЧИВОГО АММОНИТА | 2010 |
|
RU2457194C2 |
ПОЛИХЛОРЦИНКАТЫ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ | 2008 |
|
RU2395458C2 |
СОРБЕНТ СЕРОВОДОРОДА | 2012 |
|
RU2532517C2 |
ПОЛИХЛОРАЛЮМИНАТЫ ЛИТИЯ | 2008 |
|
RU2395452C2 |
СПОСОБ ПОЛУЧЕНИЯ ВОДОУСТОЙЧИВОГО НИТРАТА АММОНИЯ (АММИАЧНОЙ СЕЛИТРЫ) | 2010 |
|
RU2480411C2 |
СПОСОБ УТИЛИЗАЦИИ СЕРОВОДОРОДА КАТАЛИТИЧЕСКИМ ОКИСЛЕНИЕМ В ЭЛЕМЕНТАРНУЮ СЕРУ | 2013 |
|
RU2552443C2 |
Изобретение относится к химической технологии, преимущественно к сорбентам сероводорода, которые могут быть использованы для сухой очистки газов от сероводорода. Предложен сорбент сероводорода, содержащий в качестве основной составляющей наночастицы комплексного соединения MgCl2·ZnCl2·nEt2O, где n=1-4, размещенные в виде слоя толщиной (2-100)×10-9 м на твердом носителе. Сорбент обладает повышенной активностью в отношении сероводорода. 2 табл.
Сорбент сероводорода, отличающийся тем, что представляет собой наночастицы комплексного соединения общей формулы MgCl2·ZnCl2·nEt2O, где Et2O, n=1-4, в виде слоя толщиной (2-100)·10-9 м на любом твердом носителе.
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА ДЛЯ ОЧИСТКИ ГАЗОВ ОТ СЕРНИСТЫХ СОЕДИНЕНИЙ | 2002 |
|
RU2225757C1 |
СОРБЕНТ ДЛЯ ОЧИСТКИ ГАЗОВ ОТ СЕРНИСТЫХ СОЕДИНЕНИЙ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ | 2005 |
|
RU2311226C2 |
Способ получения поглотителя для очистки газов от сернистых соединений | 1979 |
|
SU874134A1 |
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА ДЛЯ СЕРОВОДОРОДА | 1995 |
|
RU2088329C1 |
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА | 1996 |
|
RU2098177C1 |
КОМПОЗИЦИЯ СОРБЕНТА, СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИИ СОРБЕНТА И ПРИМЕНЕНИЕ КОМПОЗИЦИИ СОРБЕНТА | 1996 |
|
RU2160630C2 |
ПОГЛОТИТЕЛЬНЫЙ РАСТВОР ДЛЯ ОЧИСТКИ ГАЗОВ ОТ СЕРОВОДОРОДА | 1996 |
|
RU2109553C1 |
US 7416655 А, 26.08.2008 | |||
US 5234884 А, 10.08.1993 | |||
US 4783433 А, 08.11.1988. |
Авторы
Даты
2011-06-10—Публикация
2009-10-09—Подача