Изобретение относится к радиотехнике и геофизике, а именно к средствам мониторинга состояния ионосферы и измерения ее параметров с использованием космических аппаратов глобальных навигационных систем. Подобные средства мониторинга и определения параметров ионосферы могут использоваться, например, для оценки максимально применимой частоты с целью планирования сеансов декаметровой (коротковолновой) радиосвязи; краткосрочного прогнозирования катастрофических землетрясений с целью принятия необходимых мер по предупреждению возможных последствий и т.д.
Известен способ определения параметров ионосферы, реализованный в устройстве измерения полного электронного содержания ионосферы при одночастотном режиме работы систем спутниковой радионавигации (Патент РФ на полезную модель №76462, опубл. 20.09.2008) на базе одночастотного радионавигационного приемника спутниковых навигационных систем типа ГЛОНАСС и/или GPS (НАВСТАР) и включающий в себя: прием радиосигналов частотой F1 от навигационных спутников, усиление и частотную селекцию, а также понижение несущей частоты принятых радиосигналов, их аналого-цифровое преобразование и определение текущего значения полного электронного содержания ионосферы по известным выражениям. Устройство включает: приемную антенну, соединенную со входом радиочастотного блока, радиочастотный блок, соединенный с выходом синтезатора частот и со входом аналого-цифрового процессора, блок вычисления полного электронного содержания, соединенный с выходами аналого-цифрового процессора и синтезатора частот, а также со входом устройства вывода информации.
Недостатком данного способа и устройства являются ограниченные функциональные возможности, так как способ позволяет определить лишь полное электронное содержание ионосферы, т.е. интегральную характеристику ионосферы, в то время как решение большинства прикладных задач в области радиосвязи и геофизики требует знания высотного распределения электронной концентрации ионосферы.
Наиболее близким к предлагаемым является способ определения электронной концентрации ионосферы Земли, реализованный в ионосферном зонде (Патент РФ на изобретение №2042129, опубл. 20.08.1995 - [1]) на базе двухчастотной навигационной аппаратуры пользователей спутниковых навигационных систем типа ГЛОНАСС и/или GPS (НАВСТАР).
Данный способ включает в себя следующие действия, выполняемые для каждого i-го момента времени:
прием радиосигналов от навигационных спутников на двух когерентных частотах F1 и F2,
определение псевдодальностей до навигационного спутника DF1 и DF2, измеренных соответственно на частотах F1 и F2,
определение разности псевдодальностей ΔD12,
определение полной электронной концентрации Le вдоль трассы «спутник-наземный пункт»,
определение в области измерения высотного профиля электронной концентрации ионосферы N(z) методом решения обратной задачи по Тихонову.
Устройство для реализации способа включает в себя последовательно соединенные антенну для приема радиосигналов от навигационных спутников и двухчастотный приемник спутниковых навигационных систем типа ГЛОНАСС и/или GPS.
Недостатками данных способа и устройства являются:
1. Значительная погрешность определения высотного профиля электронной концентрации ионосферы N(z) вследствие того, что в известном способе [1] для определения высотного профиля электронной концентрации ионосферы используется метод решения обратной задачи по Тихонову, который очень чувствителен к любым ошибкам измерений (Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. - М.: Наука, 1986, с.11, с.105; Андрианов В.А., Смирнов В.М. О точности решения обратной задачи радиопросвечивания тропосферы Земли. // Радиотехника и электроника, 1991, №6, с.1081-1087 - [2]), а прием радиосигналов от навигационных спутников сопровождается помехами, приводящими к неустойчивости получаемых решений обратной задачи методом регуляризации по Тихонову и, как следствие, значительным ошибкам при определении высотного профиля электронной концентрации ионосферы N(z) (Андрианов В.А., Смирнов В.М. Определение высотного профиля электронной концентрации ионосферы Земли по двухчастотным измерениям радиосигналов искусственных спутников Земли. // Радиотехника и электроника, 1993, т.38. №7, с.1326-1327 - [3]; Андрианов В.А., Арманд Н.А., Мосин Е.Л., Смирнов В.М. Применение радиосигналов спутниковой навигационной системы для зондирования ионосферы Земли. Препринт ИРЭ РАН, 1995, №5 (605), 24 с. - [4]).
2. Невозможность автоматизации процесса определения параметров ионосферы, так как из-за указанной неустойчивости метода решения обратной задачи по Тихонову для получения (восстановления) высотных профилей электронной концентрации ионосферы в известном способе [1] необходимо участие оператора при подборе параметра регуляризации с целью минимизации модуля невязки получаемого решения обратной задачи в зависимости от погрешностей определения исходных данных (измерений).
Практическая реализация метода регуляризации по Тихонову при решении обратной задачи радиопросвечивания ионосферы показала, что минимизация модуля невязки трудно выполнима [2-4] и, как следствие, автоматизация процесса определения параметров ионосферы практически невозможна.
3. Значительное время определения высотного профиля электронной концентрации ионосферы N(z), поскольку определение высотного профиля электронной концентрации ионосферы в известном способе [1] осуществляется только с участием оператора, то общее время определения параметров ионосферы может достигать единиц часов. В то же время известно (Брюнелли Б.Е., Намгаладзе А.А. Физика ионосферы. - М.: Наука, 1988, с.404-486; Э.Л.Афраймович, Н.П.Перевалова. GPS-мониторинг верхней атмосферы Земли. - Иркутск: ГУ НЦ РВХ СО РАМН, 2006, с.41), что ионосфера имеет достаточно быстрые (порядка 10…20 минут) вариации, поэтому способ-прототип не обеспечивает требуемой оперативности определения параметров ионосферы.
По этой же причине при работе по всем наблюдаемым одновременно навигационным спутникам (в настоящее время количество одновременно наблюдаемых спутников двух систем ГЛОНАСС и GPS достигает 16) участие оператора с целью определения в реальном масштабе времени высотного профиля электронной концентрации ионосферы N(z) физически невозможно.
4. Ограниченный диапазон углов наблюдения навигационных спутников, при котором известный способ [1] оказывается работоспособным, как следствие, незначительное количество измерений электронной концентрации ионосферы Земли. Используемый в известном способе [1] метод регуляризации Тихонова для решения обратной задачи радиопросвечивания ионосферы Земли позволяет получить решение обратной задачи лишь для ограниченного диапазона углов наблюдения навигационных спутников: приемлемая для практического применения точность определения высотного распределения электронной концентрации ионосферы достигается только в диапазоне зенитных углов наблюдения спутников 50…80 град (угол места 10-40 град), а при углах, близких к зениту (0…50 град), отличия по измерениям незначительны и, следовательно, система решаемых уравнений - вырождается [3].
Техническим результатом изобретения является повышение точности и обеспечение возможности автоматизации процесса определения параметров ионосферы, а также уменьшение времени определения параметров ионосферы при увеличении количества измерений электронной концентрации ионосферы Земли.
Технический результат достигается благодаря тому, что в способе определения электронной концентрации ионосферы, включающем в себя прием радиосигналов от навигационных спутников на двух когерентных частотах F1 и F2, определение по принятым радиосигналам псевдодальностей DF1 и DF2 до навигационного спутника, измеренных соответственно на частотах F1 и F2, определение по ним разности псевдодальностей ΔD12, определение по разности псевдодальностей полной электронной концентрации Le вдоль трассы «спутник-наземный пункт» и высотного профиля электронной концентрации ионосферы N(z) в области измерения, согласно изобретению измеряют значения фаз ψF1 и ψF2 принятых радиосигналов, определение разности псевдодальностей ΔD12 осуществляют с учетом значений фаз ψF1 и ψF2 принятых радиосигналов, а определение в области измерения высотного профиля электронной концентрации ионосферы N(z) осуществляют путем применения итерационной процедуры решения обратной задачи, основанной на использовании метода сопряженных градиентов и априорной информации о фоновом состоянии ионосферы.
Технический результат достигается также благодаря тому, что устройство для определения электронной концентрации ионосферы, содержащее антенну для приема радиосигналов от навигационных спутников, выход которой подключен к входу двухчастотного приемника спутниковых навигационных систем типа ГЛОНАСС и/или GPS, согласно изобретению снабжено блоком обработки и отображения, вход которого подключен к выходу двухчастотного приемника, при этом блок обработки и отображения выполнен с возможностью определения разности псевдодальностей ΔD12 по комбинации измеренных двухчастотным приемником псевдодальностей DF1 и DF2 до навигационного спутника и значений фаз ψF1 и ψF2 принятых радиосигналов, а также последовательного определения полной электронной концентрации Le вдоль трассы «спутник-наземный пункт» и высотного профиля электронной концентрации ионосферы N(z) в области измерения путем применения итерационной процедуры решения обратной задачи, основанной на использовании метода сопряженных градиентов и априорной информации о фоновом состоянии ионосферы.
В отличие от известного способа [1] определение в области измерения высотного профиля электронной концентрации ионосферы N(z) осуществляется не путем решения обратной задачи по методу Тихонова, а путем применения итерационной процедуры решения обратной задачи, основанной на использовании метода сопряженных градиентов (Мину М. Математическое программирование. Теория и алгоритмы. - М.: Наука, 1990, с.15-37, 102-104 - [5]; Тихонов Н.А., Гончарский А.В., Степанов В.В., Ягола А.Г. Регуляризирующие алгоритмы и априорная информация. - М.: Наука, 1993, с.89-94 - [6]) и априорной информации о фоновом состоянии ионосферы.
При этом указанная процедура реализована для измерений разности псевдодальностей ΔD12, получаемой в результате комбинации дальномерных измерений и дополнительных фазовых измерений, позволяющей оценивать значения разности псевдодальностей с точностью фазовых измерений, которые имеют более высокую точность по сравнению с другими видами измерений, что объясняется меньшей длиной волны этого сигнала относительно кодового (дальномерного) сигнала.
На фиг.1 представлена схема, иллюстрирующая последовательность действий предложенного способа.
На фиг.2 представлена схема устройства для реализации предложенного способа.
На фиг.3 представлен вид высотного профиля электронной концентрации ионосферы N(z), полученный предлагаемым способом.
Предлагаемый способ определения параметров ионосферы Земли включает в себя следующие действия, выполняемые для каждого i-ro момента времени:
прием радиосигналов от навигационных спутников на двух когерентных частотах F1 и F2,
определение псевдодальностей до навигационного спутника DF1 и DF2, измеренных соответственно на частотах F1 и F2, и соответствующих значений фаз ψF1 и ψF2 принятых радиосигналов,
определение разности псевдодальностей ΔD12 по комбинации выполненных измерений псевдодальностей до навигационного спутника DF1 и DF2 и соответствующих значений фаз ψF1 и ψF2 принятых радиосигналов,
определение полной электронной концентрации Le вдоль трассы «спутник-наземный пункт», определение в области измерения высотного профиля электронной концентрации ионосферы N(z) путем применения итерационной процедуры решения обратной задачи, основанной на использовании метода сопряженных градиентов и априорной информации о фоновом состоянии ионосферы.
В предлагаемом способе определение разности псевдодальностей ΔD12 по комбинации выполненных измерений DF1, DF2 и ψF1, ψF2 производится следующим образом: в каждый i-й момент времени после определения псевдодальностей до навигационного спутника DF1 и DF2, измеренных соответственно на частотах F1 и F2, и соответствующих значений фаз ψF1 и ψF2 принятых радиосигналов, производится определение разности псевдодальностей ΔD12 по формуле:
ΔD12(i)=(λ1ΨF1(i)-λ2ΨF2(i))+(Σ[(λ1ΨF1(i)-λ2ΨF2(i)]+[DF1(i)-DF2(i)])/M,
где Σ - знак суммирования по переменной i от 1 до M;
M - количество временных измерений, принятых в обработку;
λ1, λ2 - длина волны излучения соответственно на частотах F1 и F2.
В предлагаемом способе определение полной электронной концентрации Le вдоль трассы «спутник - наземный пункт» осуществляется по формуле:
где δ - погрешность фазовых измерений (реально величина погрешности в линейной мере составляет единицы миллиметров).
В предположении сферически слоистой среды (справедливого для ионосферы Земли в пределах интервала наблюдений) разность псевдодальностей ΔD12 связана с функцией высотного распределения электронной концентрации ионосферы N(z) следующим образом:
где z1 и z2 - предполагаемые высоты нижней и верхней границы ионосферы соответственно,
ϑ - зенитный угол наблюдения спутника с пункта измерений в каждый i-й момент времени,
a - радиус Земли,
z - текущая высота от поверхности Земли.
Решение этого уравнения относительно неизвестной (искомой) функции N(z) относится к классу некорректно поставленных задач - определению функции N(z) по измеренному значению влияния среды распространения - и
осуществляется методом сопряженных градиентов [5, 6].
В операторном виде это уравнение можно переписать в следующем виде:
Aφ=U,
где A - интегральный оператор; φ - функция, описывающая распределение параметров среды распространения (распределение электронной концентрации); U - влияние среды, в данном случае разность псевдодальностей.
При этом решение приведенного уравнения относительно неизвестной функции N(z) сводится к поиску такой функции φ, при которой функционал достигает минимума, значение которого определяется в основном погрешностью фазовых измерений.
Суть метода сопряженных градиентов заключается в следующем. Элементы φi минимизирующей последовательности определяются по следующей схеме. Каждый последующий элемент последовательности φi+1 связан с предыдущим φi соотношением φi+1=φi-αipi, где pi=-gradϕ(zi)+βipi-1 - направление градиента функции, p0=-gradϕ(z0), - величина оптимального шага вдоль направления градиента, z0 - нулевое приближение решения задачи (в общем случае z0 - произвольная допустимая точка), означает скалярное произведение.
В предлагаемом способе в качестве априорной информации о фоновом состоянии ионосферы (в качестве нулевого приближения решения задачи) может использоваться, например, долгосрочный прогноз ионосферы, основанный на какой-либо модели ионосферы, например IRI-2007 (International Reference Ionosphere).
При достижении минимума функционала элементы φi минимизирующей последовательности представляют собой искомое решение и соответствуют высотному профилю электронной концентрации ионосферы N(z).
Блок-схема устройства, реализующего заявленный способ, представлена на фиг.2 и включает в себя: антенну 1 для приема радиосигналов от навигационных спутников, двухчастотный приемник 2 спутниковых навигационных систем типа ГЛОНАСС и/или GPS, а также блок 3 обработки и отображения. При этом выход антенны 1 подключен к входу двухчастотного приемника 2, а выход последнего подключен к входу блока 3 обработки и отображения.
Антенна 1 для приема радиосигналов от навигационных спутников может быть выполнена, например, в виде антенны типа GPS-702-GGL (производитель NovAtel, Канада).
Двухчастотный приемник 2 спутниковых навигационных систем типа ГЛОНАСС и/или GPS может быть выполнен, например, в виде приемника типа ProPak-V3 (производитель NovAtel, Канада).
Блок 3 обработки и отображения 3 может быть выполнен, например, в виде стандартного персонального компьютера.
Устройство, реализующее заявленный способ, функционирует следующим образом.
Сигналы от навигационных спутников, излучаемые на двух когерентных частотах F1 и F2, принимаются антенной 1 и поступают на вход двухчастотного приемника 2, в котором происходит стандартная обработка принятых сигналов с целью определения псевдодальностей до того или иного навигационного спутника DF1 и DF2, а также определения значений фаз ΨF1 и ΨF2 принятых радиосигналов (измеренных соответственно на частотах F1 и F2).
Выходные сигналы двухчастотного приемника 2, несущие информацию о псевдодальностях DF1 и DF2 до того или иного навигационного спутника, измеренных соответственно на частотах F1 и F2 и соответствующих значений фаз ΨF1 и ΨF2 принятых радиосигналов, поступают на вход блока 3 обработки и отображения.
Блок 3 обработки и отображения определяет разность псевдодальностей ΔD12 по комбинации сделанных двухчастотным приемником 2 дальномерных и фазовых измерений, а также выполняет определение полной электронной концентрации Le вдоль трассы «спутник - наземный пункт» описанным выше образом.
По полученным значениям разности псевдодальностей ΔD12 блок 3 обработки и отображения проводит определение в области измерения высотного профиля электронной концентрации ионосферы Ne(h) путем применения итерационной процедуры [5, 6] решения обратной задачи, основанной на использовании метода сопряженных градиентов и априорной информации о фоновом состоянии ионосферы, получаемой на основе какой-либо модели ионосферы, например IRI-2007 (International Reference Ionosphere).
Пример реализации предлагаемого способа определения параметров ионосферы приведен ниже.
После приема радиосигналов (на двух когерентных частотах F1 и F2) и их обработки в двухчастотном приемнике спутниковых навигационных систем типа ГЛОНАСС и/или GPS определяется совокупность соответствующих значений псевдодальностей DF1 и DF2, а также значений фаз ΨF1 и ΨF2 для каждого навигационного спутника, находящегося в зоне видимости приемника. Пример исходного массива данных для одного спутника приведен в таблице.
По приведенной совокупности значений DF1, DF2, ΨF1 и ΨF2 осуществляется определение высотного профиля электронной концентрации ионосферы N(z) описанным выше образом.
Вид высотного профиля электронной концентрации ионосферы N(z), полученный предлагаемым способом по результатам обработки вышеприведенных значений DF1, DF2, ΨF1 и ΨF2, представлен на фиг.3.
Таким образом, благодаря заявленной совокупности существенных признаков достигается технический результат изобретения, заключающийся в повышении точности и обеспечении возможности автоматизации процесса определения параметров ионосферы, а также уменьшении времени определения параметров ионосферы при увеличении количества измерений электронной концентрации ионосферы Земли.
Повышение точности определения параметров ионосферы достигается за счет:
- использования в качестве исходных данных для определения высотного профиля электронной концентрации ионосферы N(z) результатов измерений разности псевдодальностей ΔD12, получаемых в результате комбинации дальномерных и фазовых измерений и позволяющих оценивать значения разности псевдодальностей ΔD12 с более высокой точностью;
- уменьшения погрешности определения высотного профиля электронной концентрации ионосферы N(z) вследствие использования в заявленном способе итерационной процедуры решения обратной задачи, основанной на использовании метода сопряженных градиентов и априорной информации о фоновом состоянии ионосферы, которая менее чувствительна к любым ошибкам измерений по сравнению с методом решения обратной задачи по Тихонову [2, 5, 6].
Обеспечение возможности автоматизации процесса определения параметров ионосферы достигается за счет использования в заявленном способе итерационной процедуры решения обратной задачи, основанной на использовании метода сопряженных градиентов, который в отличие от метода решения обратной задачи по Тихонову, не требует участия оператора при его реализации, т.к. существуют стандартные математические подходы к автоматическому вычислению градиентов функций [5, 6].
Уменьшение времени определения параметров ионосферы достигается за счет обеспечения возможности автоматизации процесса определения высотного профиля электронной концентрации ионосферы N(z) путем применения итерационной процедуры решения обратной задачи, основанной на использовании метода сопряженных градиентов. Заявляемый способ обеспечивает на практике уменьшение времени определения параметров ионосферы с единиц часов до 1…2 минут при количестве одновременно наблюдаемых спутников до 12…16, что позволяет обеспечить требуемую оперативность определения параметров ионосферы не только в условиях меленных, но в условиях быстрых вариаций ионосферы.
Увеличение количества измерений электронной концентрации ионосферы Земли достигается за счет:
- уменьшения времени определения параметров ионосферы в каждой области проводимых измерений (для каждого спутника) путем автоматизации процесса определения высотного профиля электронной концентрации ионосферы N(z) и, как следствие, увеличения количества измерений за единицу времени;
- расширения диапазона углов наблюдения навигационных спутников, при котором заявленный способ оказывается работоспособным.
Заявленный способ в отличие от способа [1] за счет применения итерационной процедуры решения обратной задачи, основанной на использовании метода сопряженных градиентов, оказывается работоспособным практически во всем диапазоне зенитных углов наблюдения спутников (от 0 до 80 град).
название | год | авторы | номер документа |
---|---|---|---|
Способ определения высотного профиля электронной концентрации неоднородной ионосферы | 2016 |
|
RU2626404C1 |
СПОСОБ ПАССИВНОГО ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ИОНОСФЕРЫ | 2015 |
|
RU2604696C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНО ПРИМЕНИМОЙ ЧАСТОТЫ ДЛЯ ИОНОСФЕРНОЙ РАДИОСВЯЗИ | 2012 |
|
RU2516239C2 |
СПОСОБ ЗОНДИРОВАНИЯ ИОНОСФЕРЫ, ТРОПОСФЕРЫ, ГЕОДВИЖЕНИЙ И КОМПЛЕКС ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2011 |
|
RU2502080C2 |
ИОНОСФЕРНЫЙ ЗОНД | 1993 |
|
RU2042129C1 |
УСТРОЙСТВО ПЕЛЕНГАЦИИ ИССКУСТВЕННЫХ ИОНОСФЕРНЫХ ОБРАЗОВАНИЙ | 2013 |
|
RU2523912C1 |
Способ зондирования ионосферы и тропосферы | 2018 |
|
RU2693842C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ РАСПРОСТРАНЕНИЯ И НАПРАВЛЕНИЯ ПРИХОДА ИОНОСФЕРНОГО ВОЗМУЩЕНИЯ | 2013 |
|
RU2560094C2 |
СПОСОБ ПРЕДСКАЗАНИЯ ЗЕМЛЕТРЯСЕНИЙ | 2006 |
|
RU2332692C1 |
СПОСОБ ДЛЯ ОПРЕДЕЛЕНИЯ ИОНОСФЕРНОЙ ОШИБКИ ДАЛЬНОСТЕЙ ПО ДВУХЧАСТОТНЫМ ИЗМЕРЕНИЯМ | 2005 |
|
RU2333507C2 |
Изобретение относится к области геофизики и может применяться для определения параметров ионосферы. Сущность: принимают радиосигналы от навигационных спутников на двух когерентных частотах F1 и F2. Определяют по принятым радиосигналам псевдодальностей DF1 и DF2 до навигационного спутника, измеренных соответственно на частотах F1 и F2. Определяют по ним разности псевдодальностей ΔD12. Определяют полную электронную концентрацию Le вдоль трассы «спутник - наземный пункт». Определяют в области измерения высотного профиля электронной концентрации ионосферы N(z). Измеряют значения фаз ψF1 и ψF2 принятых радиосигналов. Определяют разности псевдодальностей ΔD12 с учетом значений фаз ψF1 и ψF2 принятых радиосигналов. Применяют итерационную процедуру решения обратной задачи, основанную на использовании метода сопряженных градиентов и априорной информации о фоновом состоянии ионосферы для определения в области измерения высотного профиля электронной концентрации ионосферы N(z). Устройство для определения электронной концентрации ионосферы содержит антенну для приема радиосигналов от навигационных спутников, выход которой подключен к входу двухчастотного приемника спутниковых навигационных систем типа ГЛОНАСС и/или GPS. Устройство также снабжено блоком обработки и отображения, вход которого подключен к выходу двухчастотного приемника. При этом блок обработки и отображения выполнен с возможностью определения вышеуказанных параметров. Технический результат - повышение точности и обеспечение возможности автоматизации процесса определения параметров ионосферы. 2 н.п.ф-лы, 3 ил., 1 табл.
1. Способ определения электронной концентрации ионосферы, включающий в себя прием радиосигналов от навигационных спутников на двух когерентных частотах F1 и F2, определение по принятым радиосигналам псевдодальностей DF1 и DF2 до навигационного спутника, измеренных соответственно на частотах F1 и F2, определение по ним разности псевдодальностей ΔD12, определение по разности псевдодальностей полной электронной концентрации Le вдоль трассы «спутник-наземный пункт» и высотного профиля электронной концентрации ионосферы N(z) в области измерения, отличающийся тем, что измеряют значения фаз ψF1 и ψF2 принятых радиосигналов, определение разности псевдодальностей ΔD12 осуществляют с учетом значений фаз ψF1 и ψF2 принятых радиосигналов, а определение высотного профиля электронной концентрации ионосферы N(z) в области измерения осуществляют путем применения итерационной процедуры решения обратной задачи, основанной на использовании метода сопряженных градиентов и априорной информации о фоновом состоянии ионосферы.
2. Устройство для определения электронной концентрации ионосферы, содержащее антенну для приема радиосигналов от навигационных спутников, выход которой подключен к входу двухчастотного приемника спутниковых навигационных систем типа ГЛОНАСС и/или GPS, отличающееся тем, что оно снабжено блоком обработки и отображения, вход которого подключен к выходу двухчастотного приемника, при этом блок обработки и отображения выполнен с возможностью определения разности псевдодальностей ΔD12 по комбинации измеренных двухчастотным приемником псевдодальностей DF1 и DF2 до навигационного спутника и значений фаз ψF1 и ψF2 принятых радиосигналов, а также последовательного определения полной электронной концентрации Le вдоль трассы «спутник-наземный пункт» и высотного профиля электронной концентрации ионосферы N(z) в области измерения путем применения итерационной процедуры решения обратной задачи, основанной на использовании метода сопряженных градиентов и априорной информации о фоновом состоянии ионосферы.
Устройство для автоматической загрузки сырца кирпича и тому подобных изделий в сушильную вагонетку | 1951 |
|
SU93995A1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ЭЛЕКТРОННОЙ КОНЦЕНТРАЦИИ В ЗАДАННОЙ ОБЛАСТИ ИОНОСФЕРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2003 |
|
RU2251713C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ЭЛЕКТРОННОЙ КОНЦЕНТРАЦИИ В ЗАДАННОЙ ОБЛАСТИ ИОНОСФЕРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1999 |
|
RU2161808C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ ЭЛЕКТРОННОЙ КОНЦЕНТРАЦИИ В ЗАДАННОЙ ОБЛАСТИ ИОНОСФЕРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1990 |
|
RU2018872C1 |
Способ определения электронного содержания ионосферы | 1987 |
|
SU1835527A1 |
Авторы
Даты
2011-06-20—Публикация
2010-02-19—Подача