СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО ПЛАТИНОНИКЕЛЕВОГО КАТАЛИЗАТОРА Российский патент 2011 года по МПК H01M4/92 B01J23/42 B01J23/755 B82B1/00 

Описание патента на изобретение RU2421850C1

Изобретение относится к каталитической химии, а именно к способам получения катодных катализаторов на основе Pt, предназначенных для использования в электролизерах и топливных элементах с твердым полимерным электролитом (ТПЭ).

В электролизерах с ТПЭ замена традиционно используемого катодного катализатора Pt на Pt-Ni наряду со значительным уменьшением стоимости электрохимических устройств приводит также к уменьшению перенапряжения на электроде при высоких плотностях тока в связи с тем, что Ni обладает меньшей адсорбционной связью с атомами водорода на поверхности электрода и не позволяет адсорбированным атомам водорода блокировать поверхность электрода, что является особенно актуальным в электролизерах воды при сверхвысоких давлениях.

В работе «Supported platinum quaternary alloy elektrocatalyst» (EP 0469514, опубл. 8.12.1992 г.) показано, что сплав Pt с Ni увеличивает стабильность работы электрода топливного элемента по сравнению с чистой Pt в 1,7 раза, каталитическая активность при этом увеличивается в 2,2 раза.

В работе «Chemical and effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation» (J. Phys. Chem. B, 106(2002) 1869) показано, что добавка Ni в Pt катализатор повышает его химическую стойкость к окиси углерода.

Известны различные способы получения Pt-Ni катализаторов, предполагающие осаждение и химическое восстановление частиц Pt и Ni на углерод как с последующей высокотемпературной обработкой, так и без нее.

В работе «Electrocatalyst material comprising a platinum alloy on a conductive support» (патент ЕР 0698299, опубл. 5.21.1997 г.) описан способ синтеза Pt-Ni катализатора на углероде. Хлориды Pt и Ni осаждали на углерод и восстанавливали формальдегидом при 90°С, после чего отжигали при 930°С в течение 1 часа в инертной атмосфере.

В работе «Platinum alloy skeleton supported electrocatalyst, electrode using the electrocatalyst, and process for producing the electrocatalyst» (патент ЕР 0827225, опубл. 3.04.1998 г.) предложено восстановление Pt на углероде из гексахлорплатиновой кислоты 5%-ным раствором муравьиной кислоты с последующим осаждением Ni из нитрата Ni (II) в водном растворе 0,5 н. HNO3, после чего катализатор отжигали при 900°С в течение 1,2 часа в инертной атмосфере.

В работе «Platinum alloy carbon-supported catalysts» (заявка WO/2006/056470, опубл. 6.01.2006 г.) предложено последовательное осаждение сначала гексахлорплатиновой кислоты на углерод при нагревании из водного раствора 4М HNO3 путем повышения pH добавлением NaOH сначала до 3,5, а затем, продолжая увеличивать pH до 8,5, осаждали нитрат никеля (II). По окончании осаждения, катализатор отжигали сначала при 500°С в течение 30 минут, а затем при 850°С в течение 1 часа в потоке аргона.

Во всех приведенных работах заключительной стадией является высокотемпературная обработка катализатора при температуре 800°С и выше в потоке инертного газа. Это является главным недостатком полученных электрокатализаторов - при высоких температурах происходит спекание металлических частиц, увеличивается их размер и, как следствие, уменьшается поверхность катализатора.

В работе «Core/shell-type catalyst particles and methods for their preparation» (заявка WO/2008/025750, опубл. 3.06.2008 г.) описан способ получения Pt-Ni катализатора на углероде путем восстановления Pt и Ni из растворов гексахлорплатиновой кислоты и ацетата никеля (II) диэтиленгликолем в присутствии стабилизатора с последующим осаждением на углерод путем изменения pH раствора.

Недостатком этого способа является: большой размер полученных частиц катализатора от 20 до 26 нм; необходимость присутствия стабилизатора, что затрудняет процесс отмывки и увеличивает потери катализатора.

Известен способ получения Pt-Ni катализатора - прототип («PtNi based supported electrocatalyst for proton exchange membrane fuel cell having CO tolerance», заявка US 2006280997, опубл. 14.12.2006 г.), включающий:

- изготовление смеси исходных соединений - сажи Vulcan ХС-72, гексахлорплатиновой кислоты, соли никеля (нитрата никеля II) в растворе этиленгликоля;

- добавление к смеси исходных соединений раствора щелочи NaOH до pH=10-14;

- нагревание смеси исходных соединений в СВЧ печи с частотой 1-50 кГц и мощностью 400-1000 Вт в течение 1-30 минут;

- охлаждение смеси до комнатной температуры с последующим добавлением 3М HCl до pH=1;

- отмывку твердой фазы охлажденной смеси до pH=7;

- сушку твердой фазы;

- термическую обработку твердой фазы при температуре 300°С-800°С в течение 1-8 часов в атмосфере смеси инертных и восстанавливающих газов до полного восстановления металлов катализатора. В качестве восстанавливающих газов используют водород и метан. Полученный катализатор состоит из Pt-Ni от 30 до 80% масс. в соотношении 1:1 на углероде. Размер частиц составил 2-6 нм.

Недостаток прототипа заключается в длительном времени термообработки и, как следствие, в высокой энергозатратности процесса получения катализатора. Это связано с тем, что используемый в работе этиленгликоль не является достаточно сильным восстановителем, поэтому для восстановления катализатора требуется дополнительная термическая обработка катализатора при достаточно высоких температурах.

Техническим результатом, на который направлено изобретение, является снижение времени и энергозатратности процесса получения катализатора.

Для этого предложен способ получения наноразмерного Pt-Ni катализатора, заключающийся в изготовлении смеси исходных соединений - углеродного материала, гексахлорплатиновой кислоты, соли никеля в водном растворе, содержащем этиленгликоль, добавлении к смеси исходных соединений раствора щелочи, восстановлении металлов Pt и Ni, охлаждении смеси до комнатной температуры, отмывки и сушки катализатора, при этом раствор этиленгликоля дополнительно содержит этиловый спирт в соотношении на 2-3 части этиленгликоля 1-2 части этилового спирта, восстановление металлов Pt и Ni ведут при добавлении к раствору 1М раствора борогидрида натрия в 1М растворе гидроокиси натрия в течение 1-1,5 часа и обрабатывают смесь ультразвуком при барботировании ее инертным газом.

При этом в качестве углеродного материала используют сажу Vulcan ХС-72, или нанотрубки, или нановолокна.

В качестве инертного газа используют аргон, или гелий, или неон.

Параметры ультразвука составляют: частота 37-40 кГц, мощность 150-200 Вт.

В качестве щелочи используют 1-2 мл водного раствора аммиака.

В качестве соли никеля при изготовлении смеси исходных соединений используют хлорид никеля (II) или нитрат никеля (II).

Кроме того, углеродный материал предварительно перемешивают с этиловым спиртом.

Перемешивание проводят дисперсионным гомогенизатором со скоростью 20000-22000 об/мин в течение 30 мин.

При этом содержание металлов Pt-Ni в катализаторе составляет 20-80% масс. в соотношении Pt от 0,9 до 3,1% ат., Ni от 3,1 до 0,9% ат.

Соотношение смеси этиленгликоль:этиловый спирт к общему количеству воды составляет (3-3,5):1-1,2.

В заявляемом способе получения платино-никелевого катализатора в соотношении Pt от 0,9 до 3,1% ат., Ni от 3,1 до 0,9% ат. на углеродном носителе, например саже Vulcan ХС-72 с содержанием металлов 20-80%, процесс восстановления борогидридом натрия исходных соединений (растворов гексахлорплатиновой кислоты и хлорида никеля) проходит в среде этиленгликоль - этиловый спирт при заявленных соотношениях при обработке реакционной смеси ультразвуком с частотой 37-40 кГц и мощностью 150-200 Вт на литр с одновременной адсорбцией-восстановлением исходных соединений на углеродном носителе, который предварительно обрабатывался этиловым спиртом.

В качестве соли никеля наряду с хлоридом никеля (II) возможно использование также нитрата никеля (II), параметры синтеза и характеристики получаемого катализатора при этом не изменяются.

Время синтеза составляет не более 1,5 часа, т.к. смесь борогидрида натрия с этиленгликолем является очень сильным восстановителем. При этом происходит полное восстановление металлов в катализаторе, что исключает необходимость дополнительной температурной обработки. При использовании ультразвука достигается большая равномерность адсорбции, увеличивается эффективность процесса восстановления, образование наноразмерных частиц катализатора, исключается агломерация образующихся частиц.

При обработке ультразвуком смесь барботируют инертным газом. В качестве инертного газа используют аргон, гелий, неон. Выбор газа не влияет на качество катализатора. В результате получают бинарный наноразмерный катализатор Pt-Ni на углеродном носителе с заданной массовой долей металлов (20-80% масс.). В качестве углеродного материала используют сажу Vulcan ХС-72, или нанотрубки, или нановолокна, характеристики получаемого катализатора при этом практически не изменяются.

По данным рентгенофазового анализа полученные частицы являются твердым раствором, имеют основной размер 2-6 нм, сферическую форму и равномерное распределение на носителе. Данный катализатор при атомарном соотношении Pt:Ni=1:1 позволяет в 1,5 раза снизить расход платины.

Пример 1 (прототип).

В стакан объемом 500 мл помещают 100 мл этиленгликоля и 1 г сажи Vulcan ХС-72, при постоянном перемешивании добавляют 12,8 мл гексахлорплатиновой кислоты (с содержанием 4,9 мг Pt/мл) в растворе этиленгликоля и 99,2 мг нитрата никеля (II). В смесь добавляют 2,5 М раствор NaOH до pH=13. Смесь помещают в СВЧ печь с частотой 2,45 кГц мощностью 700 Вт на 1,5 мин. Затем смесь охлаждают до комнатной температуры и добавляют 3М HCl до pH=1. Осадок отмывают методом декантации 3-кратной сменой воды, сушат при 60°С. Высушенный осадок отжигают при 300°С в атмосфере азота в течение 8 часов.

В результате получают катализатор PtNi/C в атомном соотношении Pt:Ni=1:1 с содержанием металлов 30%. Время непосредственного синтеза составляет не менее 8 часов.

Примеры 2-8 осуществления заявленного изобретения.

Пример 2.

Синтез PtNi (1:1 ат.) на углероде с содержанием PtNi 30% масс.

В реакционный сосуд объемом 500 мл помещают 220 мг сажи Vulcan ХС-72, добавляют 100 мл смеси этиленгликоль-этиловый спирт (А) в соотношении 2,5:1, что соответствует заявленному. Количество смеси (А) принимают из расчета 40-50 мл на каждые 100 мг сажи. Полученную смесь перемешивают дисперсионным гомогенизатором со скоростью 20000-22000 об/мин в течение 20 мин. Затем сосуд со смесью помещают в ультразвуковую ванну, при комнатной температуре, добавляют 31,3 мл водного раствора хлорида никеля (с содержанием Ni 21,29 мг) и 2,0 мл водного раствора гексахлорплатиновой кислоты (с содержанием Pt 72,36 мг). Соотношение смеси (А) к общему количеству воды составляет 3:1, что соответствует заявленному, добавляют 1 мл водного раствора аммиака и включают обработку ультразвуком при барботировании инертным газом, например аргоном. Через 15 мин по каплям добавляют 50 мл 1М раствора борогидрида натрия в 1М растворе NaOH. Синтез проводят в течение одного часа. Допускается самопроизвольный разогрев реакционной смеси до 40°С. Через 1 час происходит расслоение реакционной массы. Верхняя прозрачная часть сливается, а нижняя отмывается бидистиллированной водой с помощью центрифуги до нейтральной реакции сливного раствора. Полученный катализатор сушат. Время непосредственного синтеза составляет 1 час.

Полученный катализатор был использован при изготовлении каталитической композиции катода мембрано-электродного блока (МЭБ) электролизера воды. Катодная каталитическая композиция представляет собой дисперсию частиц катализатора ((PtNi)30/V) (1:1) и раствор иономера (МФ-4СК) в пропаноле-2 (20-25 масс.%). После обработки в ультразвуковом диспергаторе полученная эмульсия наносится на пористый титан методом воздушного распыления. На аноде используется каталитическая смесь, состоящая из иридиевой черни и раствора иономера (МФ-4СК) в пропаноле-2 (5-7 масс.%). Далее катод, анод и газоразделительная мембрана объединяются в интегрированный МЭБ электролизера методом термопрессования. Затем сборку устанавливают в ячейку для электролиза деионизированной воды и подают электрический ток плотностью 0,5 А/см2 при 90°С в течение 1 часа. Через час плотность тока увеличивают. Напряжение на ячейке составляет 1,61 В при плотности тока 1 А/см2 и температуре 90°С. Ячейка стабильно работает в течение 3500 часов без изменения показателей.

Пример 3.

Синтез PtNi (1:1 ат.) на углероде с содержанием PtNi 60% масс. Как пример 2, но после помещения в ультразвуковую ванну добавляют 26,3 мл раствора хлорида никеля (с содержанием Ni 76,7 мг) и 7,0 мл раствора гексахлорплатиновой кислоты (с содержанием Pt 253,3 мг).

Полученный катализатор наносили на пористый титан и испытывали в составе МЭБ электролизера, как в примере 2. Напряжение на ячейке составляет 1,61 В при плотности тока 1 А/см2 и температуре 90°С. Ячейка стабильно работает в течение 3500 часов без изменения показателей.

Пример 4.

Синтез PtNi (1:1 ат.) на углероде с содержанием PtNi 40% масс.

Как пример 2, но после помещения в ультразвуковую ванну добавляют 30,2 мл раствора хлорида никеля (с содержанием Ni 34,1 мг) и 3,1 мл раствора гексахлорплатиновой кислоты (с содержанием Pt 112,6 мг).

Полученный катализатор наносили на пористый титан и испытывали в составе МЭБ электролизера, как в примере 2. Напряжение на ячейке составляет 1,61 В при плотности тока 1 А/см2 и температуре 90°С. Ячейка стабильно работает в течение 3500 часов без изменения показателей.

Пример 5.

Синтез PtNi (1:3 ат.) на углероде с содержанием PtNi 40% масс.

Как пример 2, но после помещения в ультразвуковую ванну добавляют 31,2 мл раствора хлорида никеля (с содержанием Ni 69,86 мг) и 2,12 мл раствора гексахлорплатиновой кислоты (с содержанием Pt 76,84 мг).

Полученный катализатор наносили на пористый титан и испытывали в составе МЭБ электролизера, как в примере 2. Напряжение на ячейке составляет 1,75 В при плотности тока 1 А/см2 и температуре 90°С. Ячейка стабильно работает в течение 3500 часов без изменения показателей.

Пример 6.

Синтез PtNi (3:1 ат.) на углероде с содержанием PtNi 40% масс.

Как пример 2, но после помещения в ультразвуковую ванну добавляют 29,65 мл раствора хлорида никеля (с содержанием Ni 13,46 мг) и 3,68 мл раствора гексахлорплатиновой кислоты (с содержанием Pt 133,24 мг).

Полученный катализатор наносили на пористый титан и испытывали в составе МЭБ электролизера, как в примере 2. Напряжение на ячейке составляет 1,61 В при плотности тока 1 А/см2 и температуре 90°С. Ячейка стабильно работает в течение 3500 часов без изменения показателей.

Пример 7.

Синтез PtNi (1:1 ат.) на углероде с содержанием PtNi 40% масс.

Как пример 2, но в реакционный сосуд объемом 500 мл с 220 мг сажи Vulcan ХС-72 добавляют 110 мл смеси этиленгликоль-этиловый спирт (А) в соотношении 3:2, что соответствует заявленному.

Полученный катализатор наносили на пористый титан и испытывали в составе МЭБ электролизера, как в примере 2. Напряжение на ячейке составляет 1,61 В при плотности тока 1 А/см2 и температуре 90°С. Ячейка стабильно работает в течение 3500 часов без изменения показателей.

Пример 8.

Синтез PtNi (1:1 ат.) на углероде с содержанием PtNi 40% масс.

Как пример 2, но в реакционный сосуд объемом 500 мл с 220 мг сажи Vulcan ХС-72 добавляют 110 мл смеси этиленгликоль-этиловый спирт (А), а после помещения в ультразвуковую ванну добавляют 20 мл раствора хлорида никеля (с содержанием Ni 34,1 мг) и 17,5 мл раствора гексахлорплатиновой кислоты (с содержанием Pt 112,6 мг). Соотношение смеси (А) к общему количеству воды составляет 3,2:1,2, что соответствует заявленному,

Полученный катализатор наносили на пористый титан и испытывали в составе МЭБ электролизера, как в примере 2. Напряжение на ячейке составляет 1,61 В при плотности тока 1 А/см2 и температуре 90°С. Ячейка стабильно работает в течение 3500 часов без изменения показателей.

Пример 9.

Катализатор, полученный в примере 4 с содержанием PtNi 40 масс % (1:1 ат) на углеродном носителе, был использован при изготовлении каталитической композиции катода мембрано-электродного блока (МЭБ) топливного элемента (ТЭ). Катодная каталитическая композиция представляет собой дисперсию частиц катализатора ((PtNi)40/V) (1:1) и раствор иономера (МФ-4СК) в пропаноле-2 (35 масс.%). После обработки в ультразвуковом диспергаторе полученная эмульсия наносится на материал типа "Пантекс" с сажевым гидрофобным подслоем методом воздушного распыления. На аноде используется каталитическая смесь, состоящая из монокатализатора Pt на углеродном носителе и раствора иономера (МФ-4СК) в пропаноле-2 (35 масс.%). Далее катод, анод и газоразделительная мембрана объединяются в МЭБ топливного элемента. МЭБ помещался в нержавеющую термостатируемую ячейку. Температура ячейки - 85°С. Испытание блоков проводили с использованием водорода и кислорода из электролизера и воздуха из компрессора. Водород и воздух дополнительно увлажнялись (температура увлажнения - 85°С). Давление газов поддерживалось постоянным с помощью редукторов, установленных на выходе газовых трактов, контролировалось манометрами (для кислорода - 3 ати, для водорода и воздуха - 2 ати). Вольтамперные характеристики снимались после выхода тока и напряжения на стационарные значения. Получены следующие характеристики: напряжение на ячейке - 0,7 В; плотность тока - 700 мА/см2 для водородовоздушного ТЭ; плотность тока - 1 А/см2 для водородкислородного ТЭ. ТЭ стабильно работал в течение 3500 часов при напряжении на ячейке 0,87 В.

Пример 10.

Катализатор, полученный в примере 5 с содержанием PtNi 40 масс.% (1:3 ат) на углеродном носителе, испытывали в составе МЭБ топливного элемента, как в примере 7. Получены следующие характеристики: напряжение на ячейке - 0,7 В; плотность тока - 600 мА/см2 для водородовоздушного ТЭ; плотность тока - 800 мА/см2 для водородкислородного ТЭ. Ячейка стабильно работает в течение 3500 часов без изменения показателей.

Таким образом, предложенный способ позволит получить катодный катализатор с высокими характеристиками на основе Pt, предназначенных для использования в электролизерах и топливных элементах с твердым полимерным электролитом (ТПЭ), при этом снизить время и энергозатраты в процессе его получения.

Похожие патенты RU2421850C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА НА УГЛЕРОДНОМ НОСИТЕЛЕ 2011
  • Акелькина Светлана Владимировна
  • Фатеев Владимир Николаевич
  • Григорьев Сергей Александрович
  • Федотов Александр Александрович
RU2467798C1
СПОСОБ ИЗГОТОВЛЕНИЯ МЕМБРАННО-ЭЛЕКТРОДНОГО БЛОКА С БИФУНКЦИОНАЛЬНЫМИ ЭЛЕКТРОКАТАЛИТИЧЕСКИМИ СЛОЯМИ 2009
  • Григорьев Сергей Александрович
  • Волобуев Сергей Алексеевич
  • Порембский Владимир Игоревич
  • Фатеев Владимир Николаевич
  • Акелькина Светлана Владимировна
RU2392698C1
СПОСОБ ПОЛУЧЕНИЯ БИМЕТАЛЛИЧЕСКИХ КАТАЛИЗАТОРОВ С ГРАДИЕНТНОЙ СТРУКТУРОЙ НА ОСНОВЕ ПЛАТИНЫ 2018
  • Алексеенко Анастасия Анатольевна
  • Гутерман Владимир Ефимович
  • Беленов Сергей Валерьевич
  • Новомлинский Иван Николаевич
  • Меньщиков Владислав Сергеевич
RU2677283C1
Способ получения биметаллического электрокатализатора на основе платиновых ядер 2021
  • Алексеенко Анастасия Анатольевна
  • Гутерман Владимир Ефимович
  • Павлец Ангелина Сергеевна
RU2778126C1
СПОСОБ ИЗГОТОВЛЕНИЯ КАТАЛИТИЧЕСКОГО СЛОЯ ЭЛЕКТРОДОВ ДЛЯ ТВЕРДОПОЛИМЕРНОГО ТОПЛИВНОГО ЭЛЕМЕНТА 2021
  • Засыпкина Аделина Алексеевна
  • Иванова Наталия Анатольевна
  • Спасов Дмитрий Дмитриевич
  • Меншарапов Руслан Максимович
  • Воробьева Екатерина Андреевна
RU2781052C1
КАТАЛИЗАТОР С НАНОРАЗМЕРНЫМИ ЧАСТИЦАМИ НА НОСИТЕЛЕ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2006
  • Акелькина Светлана Владимировна
  • Куликова Людмила Николаевна
  • Лютикова Елена Константиновна
  • Порембский Владимир Игоревич
  • Фатеев Владимир Николаевич
RU2324538C1
Способ получения электрокатализатора платина на углероде 2016
  • Дон Григорий Михайлович
  • Герасимова Екатерина Владимировна
  • Левченко Алексей Владимирович
  • Кашин Алексей Михайлович
  • Сивак Александр Владимирович
  • Добровольский Юрий Анатольевич
RU2646761C2
СПОСОБ ИЗГОТОВЛЕНИЯ ЭЛЕКТРОКАТАЛИЗАТОРА ДЛЯ ТВЕРДОПОЛИМЕРНОГО ТОПЛИВНОГО ЭЛЕМЕНТА СО СТАБИЛИЗИРОВАННЫМ ВОДНЫМ БАЛАНСОМ 2022
  • Спасов Дмитрий Дмитриевич
  • Иванова Наталия Анатольевна
  • Меншарапов Руслан Максимович
  • Засыпкина Аделина Алексеевна
  • Серегина Екатерина Алексеевна
RU2788560C1
СПОСОБ ИЗГОТОВЛЕНИЯ И МОДИФИКАЦИИ ЭЛЕКТРОХИМИЧЕСКИХ КАТАЛИЗАТОРОВ НА УГЛЕРОДНОМ НОСИТЕЛЕ 2015
  • Порембский Владимир Игоревич
  • Акелькина Светлана Владимировна
  • Фатеев Владимир Николаевич
  • Алексеева Ольга Константиновна
RU2595900C1
СПОСОБ ПРИГОТОВЛЕНИЯ МЕМБРАН-ЭЛЕКТРОДНЫХ БЛОКОВ 2013
  • Грибов Евгений Николаевич
  • Окунев Алексей Григорьевич
RU2563029C2

Реферат патента 2011 года СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО ПЛАТИНОНИКЕЛЕВОГО КАТАЛИЗАТОРА

Изобретение относится к каталитической химии, а именно к способам получения катодных катализаторов на основе Pt, предназначенных для использования в электролизерах и топливных элементах с твердым полимерным электролитом (ТПЭ). Техническим результатом является снижение времени и энергозатратности процесса получения катализатора. Согласно изобретению способ получения наноразмерного Pt-Ni катализатора заключается в изготовлении смеси исходных соединений - углеродного материала, гексахлорплатиновой кислоты, соли никеля в растворе, содержащем этиленгликоль, добавлении к смеси исходных соединений раствора щелочи, восстановлении металлов Pt и Ni, охлаждении смеси до комнатной температуры, отмывки и сушки катализатора, при этом раствор этиленгликоля дополнительно содержит этиловый спирт в соотношении на 2-3 части этиленгликоля 1-2 части этилового спирта, восстановление металлов Pt и Ni ведут при добавлении к раствору 1М раствора борогидрида натрия в 1М растворе гидроокиси натрия в течение 1-1,5 часа и обрабатывают смесь ультразвуком при барботировании ее инертным газом. В качестве углеродного материала используют сажу Vulcan XC-72, или нанотрубки, или нановолокна, в качестве инертного газа используют аргон, или гелий, или неон. 9 з.п. ф-лы.

Формула изобретения RU 2 421 850 C1

1. Способ получения наноразмерного платино-никелиевого катализатора заключающийся в изготовлении смеси исходных соединений - углеродного материала, гексахлорплатиновой кислоты, соли никеля в водном растворе, содержащем этиленгликоль, добавлении к смеси исходных соединений раствора щелочи, восстановлении металлов Pt и Ni, охлаждении смеси до комнатной температуры, отмывки и сушки катализатора, отличающийся тем, что раствор этиленгликоля дополнительно содержит этиловый спирт в соотношении на 2-3 части этиленгликоля 1-2 части этилового спирта, восстановление металлов Pt и Ni ведут при добавлении к раствору 1М раствора борогидрида натрия в 1М растворе гидроокиси натрия в течение 1-1,5 ч и обрабатывают смесь ультразвуком при барботировании ее инертным газом.

2. Способ по п.1, отличающийся тем, что в качестве углеродного материала используют сажу Vulcan XC-72, или нанотрубки, или нановолокна.

3. Способ по п.1, отличающийся тем, что в качестве инертного газа используют аргон, или гелий, или неон.

4. Способ по п.1, отличающийся тем, что параметры ультразвука составляют: частота 37-40 кГц, мощность 150-200 Вт.

5. Способ по п.1, отличающийся тем, что в качестве щелочи используют 1-2 мл водного раствора аммиака.

6. Способ по п.1, отличающийся тем, что в качестве соли никеля при изготовлении смеси исходных соединений используют хлорид никеля (П) или нитрат никеля (П).

7. Способ по п.1, отличающийся тем, что углеродный материал предварительно перемешивают с этиловым спиртом.

8. Способ по п.7, отличающийся тем, что перемешивание проводят дисперсионным гомогенизатором со скоростью 20000-22000 об/мин в течение 30 мин.

9. Способ по п.1, отличающийся тем, что содержание металлов Pt-Ni в катализаторе составляет 20-80 мас.% в соотношении Pt от 0,9 до 3,1 ат.%, Ni от 3,1 до 0,9 ат.%.

10. Способ по п.1, отличающийся тем, что соотношение смеси этиленгликоль-этиловый спирт к общему количеству воды составляет (3-3,5):1-1,2.

Документы, цитированные в отчете о поиске Патент 2011 года RU2421850C1

US 2006280997 A1, 14.12.2006
СПОСОБ ПОЛУЧЕНИЯ НИКЕЛЕВОГО КАТАЛИЗАТОРА 0
SU294639A1
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ ТОПЛИВНОГО ЭЛЕМЕНТА 2008
  • Гутерман Владимир Ефимович
  • Беленов Сергей Валентинович
  • Гутерман Андрей Владимирович
  • Пахомова Елена Борисовна
RU2367520C1
WO 2008025750 A1, 06.03.2008.

RU 2 421 850 C1

Авторы

Лютикова Елена Константиновна

Акелькина Светлана Владимировна

Серегина Екатерина Алексеевна

Даты

2011-06-20Публикация

2010-05-05Подача