СПОСОБ ИЗГОТОВЛЕНИЯ ТЕРМОЭЛЕКТРИЧЕСКОГО МОДУЛЯ С УВЕЛИЧЕННЫМ СРОКОМ СЛУЖБЫ Российский патент 2011 года по МПК H01L35/34 

Описание патента на изобретение RU2425434C2

Изобретение относится к термоэлектрическому оборудованию и предназначено для повышения надежности генераторных, а также охлаждающих термоэлектрических модулей.

Известны термоэлектрические модули, для увеличения срока службы которых на термоэлектрические ветви наносят барьерное покрытие, замедляющее деградацию свойств полупроводника, обусловленную диффузией материала контактных пластин и припоев в материал термоэлектрической ветви. Применяемые барьерные покрытия ветвей термоэлектрических модулей изготавливают из Nb, V, Cr, Ti, Rh, Pt, Zr, W, Ta, Mo, Ni [1] и их соединений методами гальванического осаждения [2] и методами вакуумного напыления с использованием термического испарения [1] либо магнетронного распыления [3]. Недостатками таких покрытий являются высокая дефектность и пористость, снижающие их антидиффузионные свойства.

Известны способы изготовления термоэлектрических модулей с помощью технологии эпитаксиального роста пленок полупроводника на подложке из другого проводника [4]. Достоинством таких модулей является высокая надежность и механическая прочность, обеспечиваемые низкой дефектностью материала полупроводника и высоким качеством барьерных покрытий. Недостатком таких модулей является высокая стоимость и длительность технологического процесса изготовления.

Наиболее близким техническим решением является технология нанесения барьерного покрытия методом вакуумного напыления в среде аргона [3]. Покрытие наносят на предварительно подготовленную поверхность с шероховатостью Ra0.02 после плазмохимического травления. Недостатком покрытия, полученного таким способом, является высокая дефектность, что способствует увеличению нежелательной диффузии через дефекты покрытия.

Задачей изобретения является увеличение надежности и срока службы термоэлектрического модуля за счет применения способа получения высокоэффективных барьерных покрытий термоэлектрических ветвей, замедляющих деградацию свойств материала полупроводниковых ветвей, обусловленную диффузией материалов элементов конструкции термоэлектрического модуля. При этом технологический процесс подготовки термоэлектрических ветвей и нанесения покрытий по скорости и стоимости сравним с другими методами вакуумного напыления.

Решение данной задачи достигается за счет применения способа получения барьерного покрытия ветвей термоэлектрического модуля методом вакуумного напыления из электродуговой сепарированной плазмы [5]. Термоэлектрические ветви с нанесенными барьерными покрытиями соединяют с помощью пайки с коммутационными пластинами, установленными на диэлектрические основания термоэлектрического модуля. При этом подготовку термоэлектрической ветви к нанесению покрытия осуществляют с помощью плазмохимического травления до достижения заданной шероховатости, а нанесение барьерного покрытия проводят в едином технологическом цикле (без нарушения вакуума в технологической камере) с подготовкой термоэлектрической ветви. Указанный технический результат достигается тем, что способ обеспечивает низкую дефектность, что обуславливает эффективное замедление диффузионных процессов и деградацию свойств полупроводника и хорошие прочностные показатели получаемого покрытия.

Для обеспечения хорошей адгезии припоя к материалу термоэлектрической ветви поверх барьерного покрытия наносят адгезионное покрытие из Ni, Mo, Cu. Нанесение адгезионного покрытия выполняют в едином технологическом цикле с подготовкой образца и нанесением барьерного покрытия. Для нанесения покрытия используют метод вакуумного напыления из электродуговой сепарированной плазмы. Данный метод обеспечивает хорошую адгезию между покрытиями и, соответственно, высокую прочность соединения ветви термоэлектрического модуля с коммутационными пластинами.

На фиг.1 показан вид части термоэлектрического модуля.

На фиг.2 показана карта диффузии олова 7 в образце термоэлектрической ветви 9 с барьерным и адгезионным покрытиями Ni и Mo 8, выполненным методом вакуумного напыления с магнетронным распылением после отжига образца при температуре 250°С в вакууме в течение 50 часов.

На фиг.3 показана карта диффузии олова 7 в образце термоэлектрической ветви 9 с барьерным и адгезионным покрытиями Ni и Mo 8, выполненным методом вакуумного напыления с из электродуговой сепарированной плазмы после отжига образца при температуре 250°С в вакууме в течение 50 часов.

Способ осуществляется следующим образом. Перед нанесением барьерного и адгезионного покрытий проводят подготовку ветви термоэлектрического модуля 1, заключающуюся в очистке поверхностей, на которые будет нанесено покрытие 5 и 6, в ультразвуковой ванне с последующей сушкой и загрузкой в вакуумную камеру. Затем проводят травление поверхности полупроводника термоэлектрической ветви в среде аргона в течение 1…5 мин до получения шероховатости Ra 0.01…0.1. По достижении заданной шероховатости включают электродуговой источник сепарированной плазмы с катодами, выполненными из одного из следующих материалов: Ti, Mo, Ni, Zr, W. Барьерное покрытие 5 наносят в течение 10…20 минут для достижения толщины 0.1…1 мкм. После этого наносят адгезионное покрытие 6, обеспечивающее возможность пайки полупроводниковых термоэлектрических ветвей 1 к коммутационным площадкам 3 с помощью припоя 4.

Источники информации

1. Патент US 6700053. Thermoelectric module, 2002.

2. Патент US 6388185. Microfabricated thermoelectric power-generation devices, 1998.

3. Патент US 6083770. Thermoelectric piece and process of making the same, 1998.

4. Патент US 7523617. Thin film thermoelectric devices for hot-spot thermal managment in microprocrssors and other electronics, 2009.

5. Патент WO 98/45871. Получение электродуговой плазмы в криволинейном плазмоводе и нанесение покрытия на подложку, 1998.

Похожие патенты RU2425434C2

название год авторы номер документа
Способ изготовления высокотемпературного термоэлемента 2020
  • Штерн Максим Юрьевич
  • Рогачев Максим Сергеевич
  • Штерн Юрий Исаакович
  • Козлов Александр Олегович
  • Корчагин Егор Павлович
  • Беспалов Владимир Александрович
RU2757681C1
СПОСОБ ПОЛУЧЕНИЯ ТЕРМОЭЛЕКТРИЧЕСКОГО ЭЛЕМЕНТА 2015
  • Штерн Юрий Исаакович
  • Громов Дмитрий Геннадьевич
  • Рогачев Максим Сергеевич
  • Штерн Максим Юрьевич
  • Дубков Сергей Владимирович
RU2601243C1
СПОСОБ КОММУТАЦИИ ВЫСОКОТЕМПЕРАТУРНЫХ ТЕРМОЭЛЕМЕНТОВ 2023
  • Козлов Александр Олегович
  • Корчагин Егор Павлович
  • Штерн Максим Юрьевич
  • Штерн Юрий Исаакович
  • Шерченков Алексей Анатольевич
  • Рогачев Максим Сергеевич
  • Пепеляев Дмитрий Валерьевич
RU2820509C1
ТЕРМОЭЛЕКТРИЧЕСКИЙ МОДУЛЬ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 1997
  • Сато Такехико
  • Камада Казуо
RU2151450C1
СПОСОБ ИЗГОТОВЛЕНИЯ ТОНКОПЛЕНОЧНОГО ЗАЩИТНОГО ПОКРЫТИЯ НА ПОВЕРХНОСТИ ТЕРМОЭЛЕКТРИЧЕСКИХ МАТЕРИАЛОВ 2021
  • Штерн Максим Юрьевич
  • Рогачев Максим Сергеевич
  • Штерн Юрий Исаакович
  • Козлов Александр Олегович
  • Корчагин Егор Павлович
RU2779528C1
ТЕРМОЭЛЕКТРИЧЕСКИЙ МОДУЛЬ 2014
  • Санеев Сергей Венедиктович
  • Башков Валерий Михайлович
  • Осипков Алексей Сергеевич
  • Додонов Александр Игоревич
  • Миронова Анна Олеговна
RU2570429C1
СПОСОБ ИЗГОТОВЛЕНИЯ ТОЛСТОПЛЕНОЧНЫХ КОНТАКТОВ НА ОСНОВЕ СПЛАВОВ ТУГОПЛАВКИХ МЕТАЛЛОВ 2023
  • Корчагин Егор Павлович
  • Штерн Юрий Исаакович
  • Козлов Александр Олегович
  • Петухов Иван Николаевич
  • Рогачев Максим Сергеевич
  • Штерн Максим Юрьевич
  • Лавренова Алина Михайловна
RU2818108C1
Способ изготовления составной ветви термоэлемента, работающей в диапазоне температур от комнатной до 900o C 2015
  • Каратаев Владимир Викторович
  • Освенский Владимир Борисович
  • Драбкин Игорь Абрамович
  • Сорокин Александр Игоревич
  • Небера Леонид Петрович
  • Лаврентьев Михаил Геннадьевич
RU2607299C1
СПОСОБ ИЗГОТОВЛЕНИЯ ОМИЧЕСКОГО КОНТАКТА 2024
  • Микушкин Валерий Михайлович
  • Маркова Елена Александровна
  • Новиков Дмитрий Александрович
RU2821299C1
СПОСОБ ИЗГОТОВЛЕНИЯ НАНОСТРУКТУРНОГО ОМИЧЕСКОГО КОНТАКТА ФОТОЭЛЕКТРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ 2010
  • Андреев Вячеслав Михайлович
  • Солдатенков Федор Юрьевич
  • Сорокина Светлана Валерьевна
  • Хвостиков Владимир Петрович
RU2426194C1

Иллюстрации к изобретению RU 2 425 434 C2

Реферат патента 2011 года СПОСОБ ИЗГОТОВЛЕНИЯ ТЕРМОЭЛЕКТРИЧЕСКОГО МОДУЛЯ С УВЕЛИЧЕННЫМ СРОКОМ СЛУЖБЫ

Изобретение относится к термоэлектрическому приборостроению. Сущность: на поверхности ветвей термоэлектрического модуля, сопрягаемые с контактными пластинами, наносят барьерное покрытие, препятствующее диффузии материалов припоя и контактных пластин в материал полупроводника. Покрытие наносят методом вакуумного напыления из сепарированной электродуговой плазмы после плазмохимического травления в едином технологическом цикле без нарушения вакуума в технологической камере. Также предусмотрено нанесение адгезионного покрытия поверх барьерного в едином технологическом цикле, что необходимо для улучшения паяемости полупроводниковых термоэлектрических ветвей. Технический результат: увеличение надежности и срока службы термоэлектрического модуля. 2 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 425 434 C2

1. Способ изготовления термоэлектрического модуля, содержащего множество термоэлектрических ветвей, при котором термоэлектрические ветви паяют к токопроводящим элементами, установленным на диэлектрическом основании, причем на предварительно подготовленные с помощью вакуумного плазмохимического травления поверхности термоэлектрических ветвей, сопрягаемые с токопроводящими элементами, с помощью вакуумных методов наносят барьерное покрытие, предотвращающее диффузию материалов проводника и припоя в полупроводник термоэлектрической ветви, и затем адгезионное покрытие, отличающийся тем, что подготовку термоэлектрической ветви с помощью плазмохимического травления и нанесение барьерного покрытия осуществляют в едином технологическом цикле без нарушения вакуума в технологической камере.

2. Термоэлектрический модуль по п.1, отличающийся тем, что нанесение барьерного покрытия выполняют с помощью вакуумного напыления из сепарированной электродуговой плазмы.

3. Термоэлектрический модуль по п.2, отличающийся тем, что после нанесения барьерного покрытия в едином технологическом цикле без нарушения вакуума в технологической камере наносят адгезионное покрытие.

Документы, цитированные в отчете о поиске Патент 2011 года RU2425434C2

ТЕРМОЭЛЕКТРИЧЕСКИЙ МОДУЛЬ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 1997
  • Сато Такехико
  • Камада Казуо
RU2151450C1
СПОСОБ СОЗДАНИЯ АНТИДИФФУЗИОННОГО БАРЬЕРА НА ПОВЕРХНОСТИ ПЛАСТИН ИЗ ТЕРМОЭЛЕКТРИЧЕСКИХ МАТЕРИАЛОВ 2005
  • Освенский Владимир Борисович
  • Малькова Нина Владимировна
  • Астахов Михаил Васильевич
  • Бублик Владимир Тимофеевич
  • Табачкова Наталья Юрьевна
RU2293399C1
CN 101409324 A, 15.04.2009
JP 2006032620 A, 02.02.2006
JP 2001028462 A, 30.01.2001
US 5441576 A, 15.08.1995.

RU 2 425 434 C2

Авторы

Башков Валерий Михайлович

Беляева Анна Олеговна

Горбатовская Татьяна Александровна

Мешков Сергей Анатольевич

Нарайкин Олег Степанович

Осипков Алексей Сергеевич

Рябинин Денис Геннадьевич

Талакин Константин Николаевич

Федоренко Иван Александрович

Шашурин Василий Дмитриевич

Даты

2011-07-27Публикация

2009-10-22Подача