СПОСОБ РАЗРУШЕНИЯ РЕЗИНОТЕХНИЧЕСКИХ ИЗДЕЛИЙ, АРМИРОВАННЫХ МЕТАЛЛИЧЕСКИМИ ЭЛЕМЕНТАМИ, ЭЛЕКТРИЧЕСКИМИ ВЫСОКОВОЛЬТНЫМИ ИМПУЛЬСНЫМИ РАЗРЯДАМИ Российский патент 2011 года по МПК B29B17/02 B09B3/00 

Описание патента на изобретение RU2425749C1

Изобретение относится к переработке пластиков, а именно к отделению пластиков от других материалов, и может найти применение для отделения и измельчения резинового слоя резинотехнических изделий, армированных металлическими элементами, электрическими высоковольтными импульсными разрядами.

Известен способ разрушения резины электрическими импульсными разрядами (Патент РФ №2050276 на изобретение "Способ разрушения эластичных материалов", МПК B29B 17/02, публ. 1995 г. Прототип). Сущность способа состоит в следующем. Изделие из эластичного материала (резина, полихлорвинил, полиуретан и др.) помещают в криогенный контейнер, заполненный жидким азотом и оснащенный электродами, и выдерживают до приобретения изделием хрупкого состояния. Затем между электродами, размещенными в жидком азоте, производят электрические высоковольтные импульсные разряды с градиентом энергии в импульсе от 2 то 15 Дж/мм.

Недостатком способа по патенту №2050276 является то, что процесс охлаждения и разрушения изделия из эластичного материала осуществляется в одном контейнере, что приводит к значительному расходу жидкого азота на испарение за счет теплового воздействия электрических разрядов, а также разбрызгивания жидкого азота достаточно мощными гидродинамическими ударами, сопровождающими электрические разряды в конденсированной среде.

Поставлена задача снизить расход жидкого азота.

Эта задача решена следующим образом. В соответствии с прототипом способ разрушения резинотехнических изделий, армированных металлическими элементами, электрическими высоковольтными импульсными разрядами заключается в том, что армированное металлическими элементами резинотехническое изделие помещают в криогенный контейнер с жидким азотом до приобретения изделием хрупкого состояния, после чего на изделие воздействуют электрическими высоковольтными импульсами с градиентом энергии от 2 до 15 Дж/мм. Согласно изобретению, охлажденное в жидком азоте изделие перемещают в рабочий контейнер, заполненный охлажденным газообразным азотом и оснащенный электродами, и осуществляют электрические высоковольтные разряды, при этом расстояние между электродами по поверхности резинового изделия не менее чем в 5,3 раза превышает толщину резинового слоя изделия.

Испытания способа проводились в два этапа: на первом этапе определялись техническая возможность и условия осуществления способа, на втором этапе - экономическая целесообразность применения способа.

Первый этап. Из конвейерной ленты толщиной 16 мм, армированной стальной лентой толщиной 1 мм, изготавливали образцы размером от 45×45 мм до 65×65 мм. Суммарная толщина резинового слоя по обе стороны от стальной ленты составляла 15 мм. Образцы помещали в криогенный контейнер и выдерживали до приобретения резиной хрупкого состояния. Затем охлажденные образцы перемещали в рабочий контейнер, заполненный охлажденным газообразным азотом и оснащенный электродами. Каждый из образцов устанавливали между электродами по геометрическому центру образца, после чего на электроды подавали высоковольтные импульсы с амплитудой напряжения 200 кВ и длительностью фронта импульса 0,2 мкс. Градиент энергии в импульсе, как и прототипе, выбирался в пределах от 2 до 15 Дж/мм.

Результаты первого этапа испытаний представлены в таблице. Из данных, приведенных в таблице, следует, что для обеспечения 100% вероятности электрического пробоя образца, а следовательно его разрушения, кратчайшее расстояние между электродами по поверхности резинового слоя образца по крайней мере в 5,3 раза должно превышать толщину резинового слоя. Только при этом условии обеспечивается техническая возможность осуществление способа.

Второй этап. Из вышеупомянутой транспортерной ленты изготовили 20 образцов массой 0,5 кг, каждый разделили на две партии по 10 штук. Первую партию образцов поочередно помещали в криогенный контейнер с жидким азотом, выдерживали до хрупкого состояния, а затем в этом же контейнере разрушали электрическими разрядами до полного отделения резинового слоя от металлической ленты и измельчения резины. Расход жидкого азота составил 1 кг на 1 кг разрушенных образцов.

Вторую партию образцов также поочередно помещали в криогенный контейнер с жидким азотом, выдерживали до хрупкого состояния, после чего перемещали в рабочий контейнер, заполненный охлажденным газообразным азотом, где и разрушали электрическими разрядами. Расход жидкого азота составил 0,6 кг на 1 кг разрушенных образцов. Следовательно расход жидкого азота был снижен на 40%.

При стоимости жидкого азота около 30 руб. за 1 кг экономический эффект от использования охлажденного газообразного азота составляет 12 руб. на каждый кг разрушаемых образцов из резинотехнических изделий.

Технический результат изобретения - снижение расхода жидкого азота.

Таблица Размеры образца, мм Толщина резинового слоя образца, мм Кратчайшее расстояние между электродами по поверхности резинового слоя образца, мм Вероятность пробоя образца, % 45×45 15 60 0 50×50 15 65 20 55×55 15 70 50 60×60 15 75 90 65×65 15 80 100

Похожие патенты RU2425749C1

название год авторы номер документа
СПОСОБ РАЗРУШЕНИЯ ЭЛАСТИЧНЫХ МАТЕРИАЛОВ 1993
  • Юшков Ю.Г.
  • Самойленко Г.М.
  • Курец В.И.
  • Таракановский Э.Н.
  • Филатов Г.П.
RU2050276C1
СПОСОБ РАЗРУШЕНИЯ АРМИРОВАННЫХ ИЗДЕЛИЙ 1992
  • Гурьянов А.В.
  • Модзолевский В.И.
RU2010709C1
УСТРОЙСТВО ДЛЯ РАЗРУШЕНИЯ ИЗНОШЕННЫХ ШИН 1993
  • Гурьянов А.В.
  • Модзолевский В.И.
RU2044650C1
УСТРОЙСТВО ДЛЯ ИЗМЕЛЬЧЕНИЯ ИЗНОШЕННЫХ ШИН 1993
  • Диденко А.Н.
  • Самойленко Г.М.
  • Юшков Ю.Г.
  • Курец В.И.
  • Таракановский Э.Н.
RU2039650C1
СПОСОБ РАЗРУШЕНИЯ ПОЛИОКТЕНА 2005
  • Лобанова Галина Леонидовна
  • Лопатин Владимир Васильевич
  • Несын Георгий Викторович
  • Сулейманова Юлия Владимировна
  • Таракановский Эдуард Николаевич
  • Филатов Геннадий Петрович
  • Юшицын Константин Владимирович
RU2314912C2
СПОСОБ РАЗРУШЕНИЯ ПОЛИОКТЕНА 2011
  • Филатов Геннадий Петрович
RU2488484C2
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВ ИЗ ПАНТОВ ОЛЕНЕЙ 2015
  • Вавилов Владимир Платонович
  • Ширяев Владимир Васильевич
  • Чулков Арсений Олегович
RU2599514C1
СПОСОБ ПОВЕРХНОСТНОГО МОДИФИЦИРОВАНИЯ РЕЗИНОТЕХНИЧЕСКИХ ИЗДЕЛИЙ 1985
  • Абдрашитов Э.Ф.
  • Тихомиров Л.А.
  • Пономарев А.Н.
  • Тальрозе В.Л.
RU1438069C
ГЕРМЕТИЧНАЯ КОНЦЕВАЯ МУФТА ДЛЯ СВЕРХПРОВОДЯЩЕГО КАБЕЛЯ 2005
  • Асибе Юуити
  • Итох Хидеки
RU2367076C2
СПОСОБ ЗАЧИСТКИ ДЕТАЛЕЙ ИЗ ПОЛИМЕРНЫХ МАТЕРИАЛОВ 2011
  • Зверовщиков Евгений Александрович
  • Зверовщиков Владимир Зиновьевич
  • Зверовщиков Александр Евгеньевич
RU2466017C1

Реферат патента 2011 года СПОСОБ РАЗРУШЕНИЯ РЕЗИНОТЕХНИЧЕСКИХ ИЗДЕЛИЙ, АРМИРОВАННЫХ МЕТАЛЛИЧЕСКИМИ ЭЛЕМЕНТАМИ, ЭЛЕКТРИЧЕСКИМИ ВЫСОКОВОЛЬТНЫМИ ИМПУЛЬСНЫМИ РАЗРЯДАМИ

Способ заключается в том, что армированное металлическими элементами резинотехническое изделие помещают в криогенный контейнер с жидким азотом и выдерживают до приобретения изделием хрупкого состояния. После чего на изделие воздействуют электрическими высоковольтными импульсами с градиентом энергии от 2 до 15 Дж/мм. Далее охлажденное в жидком азоте изделие перемещают в рабочий контейнер, заполненный газообразным азотом и оснащенный электродами. Потом осуществляют электрические высоковольтные разряды, при этом расстояние между электродами по поверхности резинового слоя изделия не менее чем в 5,3 раза превышает толщину резинового слоя изделия. Изобретение обеспечивает снижение расхода жидкого азота. 1 табл.

Формула изобретения RU 2 425 749 C1

Способ разрушения резинотехнических изделий, армированных металлическими элементами, электрическими высоковольтными импульсными разрядами, заключающийся в том, что армированное металлическими элементами резинотехническое изделие помещают в криогенный контейнер с жидким азотом и выдерживают до приобретения изделием хрупкого состояния, после чего на изделие воздействуют электрическими высоковольтными импульсами с градиентом энергии от 2 до 15 Дж/мм, отличающийся тем, что охлажденное в жидком азоте изделие перемещают в рабочий контейнер, заполненный газообразным азотом и оснащенный электродами, и осуществляют электрические высоковольтные разряды, при этом расстояние между электродами по поверхности резинового слоя изделия не менее чем в 5,3 раза превышает толщину резинового слоя изделия.

Документы, цитированные в отчете о поиске Патент 2011 года RU2425749C1

СПОСОБ РАЗРУШЕНИЯ ЭЛАСТИЧНЫХ МАТЕРИАЛОВ 1993
  • Юшков Ю.Г.
  • Самойленко Г.М.
  • Курец В.И.
  • Таракановский Э.Н.
  • Филатов Г.П.
RU2050276C1
СПОСОБ РАЗРУШЕНИЯ АРМИРОВАННЫХ ИЗДЕЛИЙ 1992
  • Гурьянов А.В.
  • Модзолевский В.И.
RU2010709C1
УСТРОЙСТВО ДЛЯ РАЗРУШЕНИЯ ИЗНОШЕННЫХ ШИН 1993
  • Гурьянов А.В.
  • Модзолевский В.И.
RU2044650C1
ГЕРБИЦИДНЫЙ СОСТАВ 2007
  • Валитов Раиль Бакирович
  • Колбин Александр Михайлович
  • Кузнецов Вячеслав Маркович
  • Сапожников Юрий Евгеньевич
  • Русинова Надежда Ивановна
  • Бадиков Юрий Владимирович
RU2347365C1
Зонд для динамического зондирования 1977
  • Амарян Лено Самвелович
  • Кулачкин Борис Иванович
SU699092A1
Способ получения на волокне оливково-зеленой окраски путем образования никелевого лака азокрасителя 1920
  • Ворожцов Н.Н.
SU57A1

RU 2 425 749 C1

Авторы

Филатов Геннадий Петрович

Курец Валерий Исакович

Юшков Анатолий Юрьевич

Даты

2011-08-10Публикация

2010-02-01Подача