СПОСОБ ИЗГОТОВЛЕНИЯ МЕДИЦИНСКОЙ МАСКИ Российский патент 2011 года по МПК A41D13/11 

Описание патента на изобретение RU2426484C1

Изобретение направлено на обеспечение индивидуальной эффективной бактерицидной защиты на основе применения нанотехнологии, а именно оперативное получение коллоидного раствора наночастиц серебра в воде с одновременной пропиткой в нем тканевых заготовок медицинских масок.

Наночастицы серебра образуются в процессе импульсного воздействия излучения лазера на парах меди на серебряную мишень, помещенную в жидкость. В качестве жидкости использована дистиллированная вода.

Параметры лазерного излучения:

- длины волн излучения - 0,51 и 0,58 мкм;

- энергия импульса излучения - 1…5 мДж;

- длительность импульса излучения - 20 нс;

- частота следования импульсов - 5…15 кГц.

В момент испарения очередной порции серебра расширяющийся эрозионный факел создает волну давления в жидкости. Это давление воздействует на материал маски с периодичностью частоты следования лазерных импульсов и обеспечивает дополнительное сцепление наночастиц с ворсинками ткани маски.

Известен способ получения медицинской маски, заключающийся в пропитке заготовки маски в заранее приготовленном коллоидном растворе серебра. При этом способе повышение сцепления частиц серебра с тканью достигается применением дополнительного ультразвукового генератора, помещаемого в раствор.

Предлагаемый способ отличается следующим.

1. Процессы получения и использования раствора проходят одновременно;

2. Не требуется дополнительного УЗ-генератора.

К дополнительным преимуществам необходимо отнести:

- общеизвестную предпочтительность раствора наночастиц серебра перед раствором ионов серебра из-за отсутствия негативных побочных влияний.

Использование лазера на парах меди предопределено тем, что:

- вода прозрачна для этого излучения;

- при разрушении мишени наносекундными импульсами в режиме «взрывного» испарения в воде продукты разрушения представляют собой наночастицы в виде чешуек диаметром 60 и толщиной несколько нанометров;

- схлопывание эрозионного факела от лазерного воздействия в воде порождает гидроудар, который способствует повышению сцепления наночастиц серебра с материалом ткани маски.

Указанный технический результат достигают тем, что в процессе разрушения серебряной пластины в воде импульсами излучения лазера на парах меди происходит образование коллоидного раствора, периодически перемешиваемого энергией эрозионного факела. Для разрушения подбирается специальный, так называемый «взрывной» режим воздействия лазерных импульсов.

В качестве примера использован лазер на парах меди «Кулон-10» с параметрами:

- энергия импульса излучения - 1 мДж;

- длительность импульса излучения - 20 нс;

- частота следования импульсов - 15 кГц;

- фокусное расстояние фокусирующего объектива - 100 мм.

На чертеже изображена «Принципиальная схема предлагаемого способа». Номера позиций обозначают:

1 - сетка-контейнер с масками;

2 - мишень из серебра;

3 - технологическая камера;

4 - коллоидный раствор;

5 - лазерный луч;

6 - фокусирующий элемент.

В качестве материала мишени использовалась пластина из чистого ювелирного серебра.

Длительность экспонирования мишени и пропитки масок составляла 17 минут.

В качестве аналога была выбрана работа «Новый метод покрытия тканей наночастицами серебра», размещенная на сайтах «Нанотехнологии Popnano.ru/Новости/Материалы и структуры» и http://kc-kachestvo.ru/textile/torre-kakchestvo1949.html «Кадровый центр-Качество». По информации этих источников исследователи из Швейцарии и Израиля разработали новый метод получения тканей (хлопка, нейлона и полиэстера), покрытых наночастицами серебра.

В раствор нитрата серебра в смеси вода-этиленгликоль помещается образец хлопчатобумажной ткани, который после этого подвергается ультразвуковому воздействию.

Массовая доля осажденного серебра слабо зависит от природы ткани. Это свидетельствует в пользу того, что частицы удерживаются за счет физической адсорбции. По всей видимости, ультразвук как бы вдавливает частицы в поверхность волокон. Размер частиц в среднем составляет около 80 нм, однако наблюдаются и более крупные агрегаты.

Еще одним источником информации (прототипом) выбрана работа «Образование наночастиц при лазерной абляции металлов в жидкости» авторов: Ф Бозон-Вердюра, Г.Ф.Шафеев и др. из журнала «Квантовая электроника», №8, 2003 г., стр.714-720.

Похожие патенты RU2426484C1

название год авторы номер документа
МАСКА МЕДИЦИНСКАЯ АНТИБАКТЕРИАЛЬНАЯ, СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ И СПОСОБ ПРИМЕНЕНИЯ 2016
  • Вдовенко Алла Ивановна
RU2656198C2
СПОСОБ ПОЛУЧЕНИЯ НАНОЧАСТИЦ ПЛАТИНОВЫХ МЕТАЛЛОВ 2013
  • Жариков Валерий Михайлович
  • Филиппов Данил Игоревич
RU2540664C2
СПОСОБ БОРЬБЫ С БАКТЕРИАЛЬНЫМИ БИОПЛЁНКАМИ 2019
  • Кудряшов Сергей Иванович
  • Ионин Андрей Алексеевич
  • Толордава Этери Ромеовна
  • Романова Юлия Михайловна
  • Настулявичус Алёна Александровна
RU2737417C1
Метод получения стабилизированных линейных цепочек углерода в жидкости 2019
  • Кутровская Стелла Владимировна
  • Кучерик Алексей Олегович
  • Скрябин Игорь Олегович
  • Осипов Антон Владиславович
  • Самышкин Владислав Дмитриевич
RU2744089C1
СПОСОБ ПОЛУЧЕНИЯ ТОНКИХ ПЛЕНОК ИЗ КОЛЛОИДНЫХ РАСТВОРОВ НАНОЧАСТИЦ БЛАГОРОДНЫХ МЕТАЛЛОВ И ИХ СПЛАВОВ, ПОЛУЧЕННЫХ МЕТОДОМ ИМПУЛЬСНОЙ ЛАЗЕРНОЙ АБЛЯЦИИ ДЛЯ СПЕКТРОСКОПИИ УСИЛЕННОГО КОМБИНАЦИОННОГО РАССЕЯНИЯ 2022
  • Волокитина Анастасия Владимировна
  • Светличный Валерий Анатольевич
  • Лапин Иван Николаевич
RU2789995C1
СПОСОБ СЕЛЕКТИВНОГО РАЗРУШЕНИЯ МЕЛАНОМЫ 2007
  • Акчурин Гариф Газизович
  • Акчурин Георгий Гарифович
  • Богатырев Владимир Александрович
  • Максимова Ирина Леонидовна
  • Маслюкова Галина Никифоровна
  • Терентюк Георгий Сергеевич
  • Хлебцов Борис Николаевич
  • Хлебцов Николай Григорьевич
  • Шантроха Александр Викторович
RU2347563C1
Способ формирования планарных структур методом атомно-силовой литографии 2017
  • Кутровская Стелла Владимировна
  • Кучерик Алексей Олегович
  • Шагурина Анастасия Юрьевна
  • Скрябин Игорь Олегович
RU2659103C1
Способ получения бактерицидных материалов для средств защиты органов дыхания 2023
  • Исаева Вера Ильинична
  • Вергун Вадим Вячеславович
  • Кустов Леонид Модестович
RU2807778C1
СПОСОБ ЛАЗЕРНОЙ ТЕРМОТЕРАПИИ КОЖИ И ЕЕ ПРИДАТКОВ, ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ ДЛЯ НЕГО И ИХ ПРИМЕНЕНИЕ 2013
  • Дементьева Ольга Вадимовна
  • Рудой Виктор Моисеевич
  • Григорьев Георгий Константинович
RU2554219C2
СПОСОБ ПОЛУЧЕНИЯ ГИБРИДНЫХ ПЛАЗМОННО-ЛЮМИНЕСЦЕНТНЫХ МАРКЕРОВ 2015
  • Маньшина Алина Анвяровна
  • Поволоцкий Алексей Валерьевич
  • Поволоцкая Анастасия Валерьевна
  • Колесников Илья Евгеньевич
RU2614245C1

Реферат патента 2011 года СПОСОБ ИЗГОТОВЛЕНИЯ МЕДИЦИНСКОЙ МАСКИ

Изобретение относится к изготовлению медицинских масок и направлено на использование нанотехнологии для индивидуальной эффективной бактерицидной защиты, а именно оперативному получению коллоидного раствора наночастиц серебра в воде с одновременной пропиткой в нем тканевых заготовок масок. Способ изготовления медицинской маски включает пошив заготовки маски из тканого материала, пропитку ее в коллоидном растворе наночастиц серебра, повышение сцепления частиц серебра с тканью маски. Коллоидный раствор для пропитки, пропитку и повышение сцепления производят параллельно с разрушением серебряной мишени импульсами сфокусированного излучения лазера на парах меди путем помещения заготовок масок и серебряной мишени в кювету с водой и доставки лазерного излучения к мишени через окно в днище кюветы. Преимущества предлагаемого способа - процессы получения и использования раствора проходят одновременно, не требуется дополнительного УЗ-генератора, отсутствие негативных побочных влияний при использовании раствора наночастиц серебра. 1 ил.

Формула изобретения RU 2 426 484 C1

Способ изготовления медицинской маски, включающий пошив заготовки маски из тканого материала, пропитку ее в коллоидном растворе наночастиц серебра, повышение сцепления частиц серебра с тканью маски, отличающийся тем, что коллоидный раствор для пропитки, пропитку и повышение сцепления производят параллельно с разрушением серебряной мишени импульсами сфокусированного излучения лазера на парах меди путем помещения заготовок масок и серебряной мишени в кювету с водой и доставки лазерного излучения к мишени через окно в днище кюветы.

Документы, цитированные в отчете о поиске Патент 2011 года RU2426484C1

Катучий металлический щит 1949
  • Коган А.Э.
SU90300A1
ИЗДЕЛИЯ, ЗАЩИЩАЮЩИЕ ОТ МНОЖЕСТВЕННЫХ ВРЕДНЫХ ВОЗДЕЙСТВИЙ, И СПОСОБ ИХ ИЗГОТОВЛЕНИЯ 2003
  • Демео Рональд
  • Кучеровски Джозеф
RU2320037C2
ПЛОСКОСКЛАДЫВАЮЩИЕСЯ ИНДИВИДУАЛЬНЫЕ ЗАЩИТНЫЕ ДЫХАТЕЛЬНЫЕ УСТРОЙСТВА И СПОСОБ ИХ ИЗГОТОВЛЕНИЯ 1996
  • Босток Грэм
  • Брайант Джон
  • Каррен Десмонд
  • Хендерсон Кристофер
  • Крюгер Деннис
  • Дайрад Джеймс
RU2266766C2
CN 101558912 A, 21.10.2009.

RU 2 426 484 C1

Авторы

Жариков Валерий Михайлович

Шарапов Денис Григорьевич

Даты

2011-08-20Публикация

2010-03-11Подача