Данное изобретение относится к способу диспергирования нано- и микрочастиц, их смешения с частицами полимера и закрепления на поверхности частиц полимера с целью введения нано- или микрочастиц в полимерную матрицу, используемую для создания изделий из модифицированных полимерных материалов, и может быть использовано в устройствах серийного производства указанных изделий.
Предпосылкой создания изобретения является необходимость получения исходных модифицированных полимерных материалов (МПМ) с требуемыми свойствами, пригодных для изготовления изделий с улучшенными свойствами в различных областях техники и промышленности.
Известные способы диспергирования нано- и микрочастиц и закрепление их на поверхности полимера основаны:
- на механическом перемешивании конгломерата нано- или микрочастиц с частицами полимера (например, в виде гранул или порошка), в том числе заряженных частиц [Патент на изобретение №2164864, B27N 3/02, B27N 1/02 от 10.04.2001; Moniruzzaman M., Winey K.I. Polymer Nanocomposites Containing Carbon Nanotubes // Macromolecules. - 2006. - V.39. - P.5194-5205; Prashantha К., Soulestin J., Lacrampe M.F., Krawczak P., Dupinband G., Claes M. Masterbatch-based multi-walled carbon nanotube filled polypropylene nanocomposites // Composites Science and Technology 2009 doi:10.1016/j.compscitech. 2008.10.005];
- на диспергировании в растворе с участием поверхностно-активных веществ (ПАВ) и применением ультразвука с последующим введением диспергированных частиц в модифицируемый полимерный материал [Vaisman L., Wagner H.D., Marom G. The role of surfactants in dispersion of carbon nanotubes // Advances in Colloid and Interface Science. - 2006. - V.128-130. - P.37-46];
- на модификации, по меньшей мере, части поверхности полимера за счет окисления поверхностных молекул различными физико-химическими методами, такими как обработка электромагнитным полем, плазмой, обработка пламенем, облучение инфракрасным светом, химическое окисление с использованием окисляющих реагентов, поверхностная химическая «прививка» [Международный патент №2163246, C08J 7/12, C08J 3/28, C09J 5/02 от 28.06.1996].
Известные способы диспергирования нано- и микрочастиц и закрепления их на поверхности материала имеют ряд недостатков, что затрудняет и удорожает организацию серийного производства изделий из МПМ с требуемыми свойствами. Основными недостатками являются:
- плохая воспроизводимость параметров и характеристик конечного МПМ, а также отсутствие возможности регулирования концентрации нано- или микрочастиц в модифицированном полимерном материале при его производстве;
- длительное время технологического процесса, сложность контроля и стабилизации характеристик конечного МПМ, получаемого за счет механического диспергирования и закрепления нано- или микрочастиц на частицах полимера;
- сложность контроля чистоты конечного МПМ, а также трудности при реализации серийного производства МПМ, получаемого за счет диспергирования нано- или микрочастиц в растворе с участием поверхностно-активных веществ (ПАВ) и применением ультразвука;
- необходимость в изменении химической структуры, по меньшей мере, части поверхности полимера за счет окисления поверхностных молекул различными физико-химическими методами. Изменение химической структуры является недопустимым при производстве некоторых изделий из МПМ, применяемых в промышленности.
Целью изобретения является создание способа диспергирования нано- и микрочастиц и их закрепления на частицах полимера, позволяющего реализовать серийное производство изделий из МПМ с повышенной воспроизводимостью параметров и характеристик конечного материала и свободного от вышеуказанных недостатков.
Цель изобретения достигается тем, что смешение отдельных нано- или микрочастиц происходит в газовой среде, при этом конгломераты нано- или микрочастиц вводятся в поток газа. Полученная смесь ионизируется, и конгломераты нано- или микрочастиц заряжаются, затем диспергируют за счет превышения электростатическими силами отталкивания вандерваальсовских сил взаимодействия на отдельные заряженные нано- или микрочастицы. Одновременно частицы полимера вводятся в другой поток газа, полученная смесь также ионизируется, при этом частицы полимера заряжаются противоположным по знаку зарядом относительно заряда нано- или микрочастиц. За счет подбора химического состава газа обеспечиваются наилучшие условия заряда и диспергирования нано- или микрочастиц, а также условия заряда частиц полимера. Затем раздельные двухфазные газовые потоки смешиваются, при этом нано- или микрочастицы осаждаются на частицах полимера за счет электростатического взаимодействия между заряженными противоположными по знаку зарядами нано- или микрочастиц и частицами полимера. Количество нано- или микрочастиц на поверхности полимерного материала определяется величинами зарядов этих частиц и частиц полимера. Закрепление нано- или микрочастиц на полимерном материале осуществляется за счет воздействия электромагнитным полем на частицы полимера вместе с осажденными на их поверхности нано- или микрочастицами. Параметры (частота и мощность) электромагнитного поля зависят от химических и диэлектрических свойств нано- или микрочастиц и частиц полимера и выбираются для конкретного полимера (например, без ограничения только этим перечнем, полиамид, полиэтилен, полипропилен, полистирол, поликарбонат) таким образом, чтобы обеспечить закрепление нано- или микрочастиц на поверхности полимера. Повышение эффективности процесса закрепления нано- или микрочастиц на поверхности частиц полимера возможно также за счет воздействия комбинированным электромагнитным полем на частицы полимера вместе с осажденными на их поверхности нано- или микрочастицами. Отделение модифицированных полимерных частиц с закрепленными на их поверхности нано- или микрочастицами от газового потока осуществляется любым известным способом, например Патент на изобретение №230402 В03С 3/00 от 02.08.2006. При этом возможно объединение камеры закрепления нано- или микрочастиц на поверхности полимера с камерой отделения полученных модифицированных полимерных частиц с закрепленными на их поверхности нано- или микрочастицами от газового потока. Производство изделий из МПМ осуществляется стандартным способом, например с использованием экструдера с последующей формовкой деталей.
Поскольку все действия заявленного способа известны, то он соответствует критерию «промышленная применимость», а отсутствие аналогов, характеризующихся признаками, тождественными всем существенным признакам заявленного способа, свидетельствует о том, что заявленный способ соответствует условию «новизна».
Предложенный способ диспергирования нано- и микрочастиц и их закрепления на частицах полимера возможно реализовать в устройстве, состоящем из источника газа для нано- или микрочастиц, выход которого подсоединен к входу распылителя конгломерата нано- или микрочастиц, распылителя конгломерата нано- или микрочастиц, выход которого соединен с первым входом ионизатора для заряда нано- или микрочастиц, регулятора тока заряда нано- или микрочастиц, соединенного со вторым входом ионизатора для заряда нано- или микрочастиц, источника газа для частиц полимера, выход которого подсоединен к входу распылителя частиц полимера, распылителя частиц полимера, выход которого соединен с первым входом ионизатора для заряда частиц полимера, регулятора тока заряда частиц полимера, соединенного со вторым входом ионизатора для заряда частиц полимера, камер ионизаторов для заряда нано- или микрочастиц и частиц полимера, соответствующие выходы которых подключены каждый к своему входу камеры смешения, камеры смешения, соединенной с первым входом камеры закрепления нано- или микрочастиц на поверхности полимера, источника электромагнитного поля камеры закрепления нано- или микрочастиц на поверхности полимера, выход которой соединен со вторым входом камеры закрепления, регулятора параметров электромагнитного поля, выход которого соединен с входом источника электромагнитного поля, камеры закрепления нано- или микрочастиц на поверхности полимера, выход которой соединен с входом камеры отделения модифицированных частиц полимера от потока газа.
Возможна модификация рассмотренного выше устройства, реализующего способ диспергирования нано- и микрочастиц и их закрепления на частицах полимера, отличительная особенность которой заключается в том, что выход общего источника газа подсоединяется к входу разделителя газового потока, первый выход разделителя газового потока подсоединен к входу распылителя конгломерата нано- или микрочастиц, а второй выход разделителя газового потока подсоединен к входу распылителя частиц полимера.
На фиг.1 и фиг.2 представлены функциональные схемы устройств, реализующие предложенный способ. Устройства содержат два раздельных источника газа 1 и 1а для нано- или микрочастиц и частиц полимера соответственно на фиг.1 (общий источник газа 1 для нано- или микрочастиц и частиц полимера и разделителя газового потока 1а на фиг.2), распылитель конгломерата нано- или микрочастиц 2, ионизатор для заряда нано- или микрочастиц 3, регулятор величины тока заряда нано- или микрочастиц 4, распылитель частиц полимера 5, ионизатор для заряда частиц полимера 6, регулятор величины тока заряда частиц полимера 7, камеру смешения двух газовых потоков 8, камеру закрепления нано- или микрочастиц на поверхности полимера 9, источник электромагнитного поля камеры закрепления нано- или микрочастиц на поверхности полимера 10, регулятор параметров электромагнитного поля 11, камеру отделения модифицированных полимерных частиц 12.
Устройство работает следующим образом.
Газовый поток от источника газа 1 попадает в камеру распылителя конгломератов нано- или микрочастиц 2, в которой создается газовый поток конгломерата нано- или микрочастиц. Газовый поток конгломерата нано- или микрочастиц попадает в камеру ионизатора нано- или микрочастиц 3, обеспечивающую заряд и диспергирование конгломерата нано- или микрочастиц на отдельные заряженные нано- или микрочастицы. Величина заряда нано- или микрочастиц регулируется за счет регулятора величины тока заряда нано- или микрочастиц 4. Одновременно газовый поток от источника газа 1а попадает в камеру распылителя частиц полимера 5, создающую газовый поток частиц полимера. Газовый поток частиц полимера попадает в камеру ионизатора частиц полимера 6, в которой происходит заряд частиц полимера. Требуемая величина заряда частиц полимера обеспечивается регулятором тока заряда частиц полимера 7. В камере смешения двух газовых потоков 8 газовые потоки, несущие заряженные нано- или микрочастицы и заряженные противоположным знаком частицы полимера, смешиваются, обеспечивая смешение и осаждение нано- или микрочастиц на частицах полимера. Из камеры смешения двух газовых потоков 8 частицы полимера с осажденными на их поверхностях нано- или микрочастицами попадают в камеру закрепления нано- или микрочастиц на поверхности полимера 9. Источник электромагнитного поля камеры закрепления нано- или микрочастиц на поверхности полимера 10 обеспечивает закрепление нано- или микрочастиц на поверхности частиц полимера за счет регулирования параметров электромагнитного поля регулятором параметров электромагнитного поля 11. В камере отделения модифицированных полимерных частиц 12 частицы полимера с закрепленными на их поверхности углеродными наночастицами отделяются от газового потока.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА КАПСУЛИРОВАННОГО ПОЛИМЕРНОГО МАТЕРИАЛА (ВАРИАНТЫ) И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ (ВАРИАНТЫ) | 2011 |
|
RU2470956C1 |
СПОСОБ СМЕШЕНИЯ ДВУХ МНОГОФАЗНЫХ ГАЗОВЫХ ПОТОКОВ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2012 |
|
RU2498847C2 |
СПОСОБ МОДИФИКАЦИИ ПОЛИМЕРНОГО ПЛЕНОЧНОГО МАТЕРИАЛА (ВАРИАНТЫ) И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2010 |
|
RU2439096C1 |
СПОСОБ КАПСУЛИРОВАНИЯ СУБМИКРОННЫХ ЧАСТИЦ ПОЛИМЕРОМ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2020 |
|
RU2767910C1 |
УСТРОЙСТВО СПОРТИВНЫХ СНАРЯДОВ СО СКОЛЬЗЯЩЕЙ ПОВЕРХНОСТЬЮ | 2012 |
|
RU2531892C2 |
СПОСОБ ПОЛУЧЕНИЯ НАНОМОДИФИЦИРОВАННЫХ ПОЛИМЕРНЫХ МАТЕРИАЛОВ | 2012 |
|
RU2523716C1 |
СПОСОБ ДИСПЕРГИРОВАНИЯ НАНО- ИЛИ МИКРОЧАСТИЦ, ИХ СМЕШЕНИЯ С ЧАСТИЦАМИ ПОЛИМЕРА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2013 |
|
RU2541496C2 |
УСТРОЙСТВО ВОЗБУЖДЕНИЯ ПЛАЗМЫ ГАЗОВОГО РАЗРЯДА | 2006 |
|
RU2330363C2 |
СПОСОБ ПРЕДОТВРАЩЕНИЯ ОБРАЗОВАНИЯ И УДАЛЕНИЯ ЛЬДА С КОМПОЗИТНЫХ КОНСТРУКТИВНЫХ ЭЛЕМЕНТОВ И УСТРОЙСТВО ЕГО РЕАЛИЗУЮЩЕЕ | 2015 |
|
RU2578079C1 |
БЕГОВЫЕ ЛЫЖИ ДЛЯ КОНЬКОВОГО ХОДА | 2014 |
|
RU2569792C1 |
Данное изобретение относится к способу диспергирования нано- и микрочастиц, их смешения с частицами полимера и закрепления на поверхности частиц полимера с целью введения нано- или микрочастиц в полимерную матрицу, используемую для создания изделий из модифицированных полимерных материалов, и может быть использовано в устройствах серийного производства указанных изделий. Реализация данного способа достигается тем, что смешение отдельных нано- или микрочастиц происходит в газовой среде, при этом конгломераты нано- или микрочастиц вводятся в поток газа. Полученная смесь ионизируется, и конгломераты нано- или микрочастиц заряжаются, затем диспергируются на отдельные заряженные нано- или микрочастицы. Одновременно частицы полимера вводятся в другой поток газа, полученная смесь также ионизируется, при этом частицы полимера заряжаются противоположным по знаку зарядом относительно заряда нано- или микрочастиц. Затем раздельные двухфазные газовые потоки смешиваются, при этом нано- или микрочастицы осаждаются на частицах полимера за счет электростатического взаимодействия между заряженными противоположными по знаку зарядами нано- или микрочастиц и частиц полимера. Закрепление нано- или микрочастиц на полимерном материале осуществляется за счет воздействия электромагнитным полем на частицы полимера вместе с осажденными на их поверхности частицами. Производство изделий из модифицированных полимерных материалов осуществляется стандартным способом, например, с использованием экструдера с последующей формовкой деталей. Техническим результатом изобретения является обеспечение возможности получения наилучших условий заряда и диспергирования нано- или микрочастиц, условий заряда частиц полимера, а также повышение эффективности процесса закрепления нано- или микрочастиц на поверхности частиц полимера. 2 н. и 3 з.п. ф-лы, 2 ил.
1. Способ диспергирования нано- или микрочастиц, их смешения с частицами полимера и закрепления на поверхности частиц полимера, отличающийся тем, что смешение происходит в газовой среде, при этом конгломераты нано- или микрочастиц вводятся в поток газа, полученная смесь ионизируется, и конгломераты нано- или микрочастиц заряжаются и диспергируют за счет превышения электростатическими силами отталкивания вандерваальсовских сил взаимодействия на отдельные заряженные нано- или микрочастицы, одновременно частицы полимера (порошок или гранулы) вводятся в другой поток газа, полученная смесь также ионизируется, при этом полимерные частицы заряжаются зарядом, противоположным по знаку заряда нано- или микрочастиц, газовые потоки заряженных полимерных и нано- или микрочастиц смешиваются, при этом происходит осаждение нано- или микрочастиц на поверхности полимера за счет электростатического взаимодействия между заряженными противоположными по знаку зарядами нано- или микрочастицами и частицами полимера, нано- или микрочастицы закрепляются на поверхности полимера за счет облучения частиц полимера электромагнитным полем, после чего частицы полимера с закрепленными на их поверхности нано- или микрочастицами отделяются от газового потока.
2. Способ по п.1, отличающийся тем, что в камере закрепления нано- или микрочастиц на поверхности частиц полимера используется комбинированное электромагнитное поле с целью повышения эффективности процесса закрепления.
3. Способ по п.1, отличающийся тем, что камера закрепления нано- или микрочастиц на поверхности полимера объединена с камерой отделения полученных модифицированных полимерных частиц с закрепленными на их поверхности нано- или микрочастицами от газового потока.
4. Устройство, реализующее способ диспергирования нано- или микрочастиц, их смешения с частицами полимера и закрепления на поверхности частиц полимера, состоящее из распылителя конгломерата нано- или микрочастиц, распылителя частиц полимера, ионизатора для заряда нано- или микрочастиц, ионизатора для заряда частиц полимера, камеры смешения, отличающееся тем, что выход источника газа для нано- или микрочастиц подсоединен к входу распылителя конгломерата нано- или микрочастиц, выход распылителя конгломерата нано- или микрочастиц соединен с первым входом ионизатора для заряда нано- или микрочастиц, регулятор тока заряда нано- или микрочастиц соединен со вторым входом ионизатора для заряда нано- или микрочастиц, выход источника газа для частиц полимера подсоединен к входу распылителя частиц полимера, выход распылителя частиц полимера соединен с первым входом ионизатора для заряда частиц полимера, регулятор тока заряда частиц полимера соединен со вторым входом ионизатора для заряда частиц полимера, выходы камер ионизаторов для заряда нано- или микрочастиц и частиц полимера подключены каждый к своему входу камеры смешения, камера смешения соединена с первым входом камеры закрепления нано- или микрочастиц на поверхности полимера, выход источника электромагнитного поля камеры закрепления нано- или микрочастиц на поверхности полимера соединен со вторым входом камеры закрепления, выход регулятора параметров электромагнитного поля соединен с входом источника электромагнитного поля, выход камеры закрепления нано- или микрочастиц на поверхности полимера соединен с входом камеры отделения модифицированных частиц полимера от потока газа.
5. Устройство по п.2, отличающееся тем, что выход общего источника газа подсоединяется к входу разделителя газового потока, первый выход разделителя газового потока подсоединен к входу распылителя конгломерата нано- или микрочастиц, а второй выход разделителя газового потока подсоединен к входу распылителя частиц полимера.
СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА | 1999 |
|
RU2164864C1 |
СПОСОБ НАВЕДЕНИЯ ЭЛЕКТРОСТАТИЧЕСКОГО ЗАРЯДА НА ПОРОШКИ ДЛЯ ИСПОЛЬЗОВАНИЯ ТАКИХ ПОРОШКОВ ДЛЯ ИЗГОТОВЛЕНИЯ ПОКРЫТИЙ | 1995 |
|
RU2162375C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ ИЗ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ | 1995 |
|
RU2076040C1 |
СПОСОБ МОДИФИКАЦИИ, ПО МЕНЬШЕЙ МЕРЕ, ЧАСТИ ПОВЕРХНОСТИ ПОЛИМЕРА | 1996 |
|
RU2163246C2 |
СИСТЕМА ПРИВЕДЕНИЯ В ДЕЙСТВИЕ ВНУТРИСКВАЖИННОГО СОЛЕНОИДНОГО ИСПОЛНИТЕЛЬНОГО ПРИВОДА | 2014 |
|
RU2664282C1 |
WO 8909795 A1, 19.10.1989 | |||
Устройство для измерения длины движущегося изделия | 1987 |
|
SU1446454A1 |
Авторы
Даты
2011-09-10—Публикация
2009-09-29—Подача