СПОСОБ ПОЛУЧЕНИЯ ЗОЛЯ НАНОАЛМАЗОВ Российский патент 2011 года по МПК C01B31/06 B82B3/00 

Описание патента на изобретение RU2430016C2

Изобретение относится к химической технологии, а именно к способам получения высокочистых активных углеродных и алмазных наноматериалов в виде коллоидно-устойчивого золя. Изобретение может быть использовано в технологиях производства коммерческих продуктов на основе наноалмазов, в том числе при изготовлении композиционных материалов с высокой коллоидной устойчивостью дисперсной фазы и/или с контролируемым размером алмазных частиц при соблюдении требований высокой степени чистоты и точности содержания дисперсной фазы.

Существуют две основные проблемы в технологии изготовления высокочистых наноразмерных материалов, включая детонационные алмазы:

- сохранение наноразмерного состояния материала (размер агрегатов алмазных частиц менее 100 нм);

- получение продуктов высокой степени чистоты, которая достигается удалением малорастворимых и сорбированных соединений - побочных продуктов технологии производства.

Поэтому для получения гетерогенных коллоидно-устойчивых композиций наноалмазов с однородной по размеру частиц дисперсной фазой необходимо исключить содержание в продукте обработки сорбированных соединений и водорастворимых примесей.

Из уровня техники известен способ обработки наноалмазов (патент РФ №2258671, опубл. 20.08.2005 г.), принятый за прототип, включающий получение суспензии на основе наноалмазов и воды, и ее разделение на дисперсионную среду и дисперсную фазу.

Недостатком известного способа является использование в технологии органического модификатора. Его применение увеличивает загрязнение конечного продукта, что отрицательно сказывается на потребительских свойствах. Кроме того, данный способ обладает низкой технологичностью из-за использования суспензии наночастиц в малой концентрации, предусматривает сложность аппаратурного оформления из-за использования ультразвукового диспергатора и центрифуги с последующей сушкой наноалмазов под вакуумом, что приводит к большим временным и энергетическим затратам.

Задачей настоящего изобретения является создание эффективного и технологически целесообразного промышленного способа получения золя наноалмазов, позволяющего исключить применение органического модификатора, упростить аппаратурное оформление, достичь строго определенной концентрации конечного продукта (до 10 мас.%), его высокой чистоты, низкой электропроводности и заданной размерности частиц дисперсной фазы.

Поставленная задача решается предлагаемым способом получения золя наноалмазов, включающим получение суспензии на основе наноалмазов и воды, ее разделение на дисперсионную среду и дисперсную фазу. Особенность заключается в том, что перед разделением осуществляют обработку суспензии водным раствором щелочи в концентрации, необходимой для установления адсорбционного равновесия в суспензии, последующее отделение щелочи от дисперсионной среды до получения устойчивой суспензии, которую затем подвергают ультрафильтрации на трубчатом мембранном фильтре или блоке таких фильтров.

В частности, после ультрафильтрации осуществляют фракционирование путем центробежного нагружения в диапазоне от 40 до 40000 g, где g - ускорение свободного падения.

В частности, в качестве трубчатого мембранного фильтра используют фильтр, выполненный из фторопласта или керамики, с размерами пор 10-500 нм.

В частности, внутреннюю полость трубчатого мембранного фильтра, выполненного из фторопласта, оснащают турбулизирующим элементом.

Проведенный сопоставительный анализ показывает, что предлагаемый способ отличается от прототипа принципиально иной совокупностью действий, неизвестной из уровня техники, включающей использование щелочной обработки для проведения массообмена на поверхности частиц наноалмазов, применение химически стойких ультрафильтров для отделения ионов ОН и для концентрирования алмазных коллоидов.

Примеры осуществления способа получения золя наноалмазов.

Пример 1. К 100 г наноалмазов в виде 1 литра 10% суспензии в воде приливают щелочь, например NaOH, растворенную в воде с концентрацией 0,5-2 мас.%, до достижения адсорбционного равновесия. Концентрация щелочи ниже 0,5 мас.% не позволяет достичь требуемой устойчивости суспензии, а концентрация более 2 мас.% экономически нецелесообразна. Полученную суспензию перемешивают, отстаивают в течение 12 часов, после чего удаляют осветленный слой дисперсионной среды в объеме 7 литров. К оставшейся суспензии добавляют 7 литров дистиллированной воды, вновь отстаивают и удаляют осветленный слой дисперсионной среды в объеме 7 литров. К оставшейся суспензии добавляют 7 литров дистиллированной воды до образования устойчивой суспензии с рН 12.

Полученную устойчивую суспензию отправляют на ультрафильтрационную отмывку на фторопластом фильтре с размерами пор 100-200 нм, заключающуюся в замене щелочной среды на дистиллированную воду до достижения рН 7.

Ультрафильтрационное концентрированние золя проводят до содержания твердой фазы в системе 7-10 мас.%, которое определяют по объему пермеата, выделившегося из системы.

Удельная производительность процесса фильтрации по пермеату 280 л/м2·ч.

К концентрированному золю приливают деионизированную воду в количестве, необходимом до доведения концентрации твердой фазы до 5 мас.%. Объем 5% золя в количестве 1500 мл подвергают фракционированию путем центробежного нагружения в диапазоне от 40 до 40000 g, где g - ускорение свободного падения, в течение 60 минут, например, на ультрацентрифуге Beckman XL-90.

Пример 2. Процесс ведут аналогично примеру 1, при этом используют фторопластовый фильтр с размерами пор 100-200 нм, в полости которого размещают турбулизирующий элемент, например стержень с насаженными кольцами, диаметр каждого из которых dк=0,7dф, где dф - диаметр трубки фильтра, а расстояние между соседними кольцами l=3dк, или любой другой конструктивно иначе выполненный элемент, пригодный для целей турбулизации.

Удельная производительность процесса фильтрации по пермеату 380 л/м2·ч.

Пример 3. Процесс ведут аналогично примеру 1, при этом используют керамический фильтр с размерами пор 10-500 нм.

Удельная производительность процесса фильтрации по пермеату 1000-1600 л/м2·ч.

При использовании керамического фильтра с размерами пор 10-500 нм величина удельной производительности в 3-6 раз выше по сравнению с фторопластовым фильтром без турбулизирующей вставки.

При необходимости один трубчатый мембранный фильтр может быть заменен на блок фильтров меньшего размера.

В зависимости от заданного значения центробежного нагружения из приведенного интервала, получают фугат (золь наноалмазов) с определенным средним размером (Rm) частиц наноалмазов (см. таблицу) и осадок (концентрат наноалмазов).

Центробежное нагружение Rm, нм 40-100 g 500 100-500 g 400 500-1000 g 300 1000-2000 g 200 5000-8000 g 100 15000-26000 g 70 26000-40000 g 50

Задавать величину центробежного нагружения менее 40 g нецелесообразно ввиду отсутствия эффективного процесса разделения и незначительного количества выделяемой фракции, а ведение фракционирования при режимах, превышающих 40000g, является экономически нецелесообразным в результате увеличения затрат на процесс центрифугирования при незначительном количестве выделяемой фракции.

Таким образом, предлагаемый способ получения золя наноалмазов практически реализуем и позволяет удовлетворить давно существующую потребность в решении поставленной задачи.

Похожие патенты RU2430016C2

название год авторы номер документа
СМАЗОЧНАЯ КОМПОЗИЦИЯ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 2009
  • Беляев Вячеслав Николаевич
  • Ларионова Ирина Семеновна
  • Кутакова Надежда Михайловна
  • Полева Людмила Ивановна
RU2417252C1
СПОСОБ ПОДГОТОВКИ КЕРАМИЧЕСКОЙ МЕМБРАНЫ ДЛЯ УЛЬТРАФИЛЬТРАЦИИ МОЛОЧНОЙ СЫВОРОТКИ 2006
  • Корякин Игорь Иванович
  • Скороходов Алексей Геннадьевич
  • Бабёнышев Сергей Петрович
RU2332252C2
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ ПОКРЫТИЙ 2007
  • Ларионова Ирина Семеновна
  • Беляев Вячеслав Николаевич
  • Ильиных Константин Федорович
  • Фролов Александр Валериевич
  • Бычин Николай Валерьевич
  • Митрофанов Вячеслав Михайлович
RU2357017C1
ДИСПЕРСИЯ ОКСИДА ЦИРКОНИЯ, СПОСОБ ЕЕ ПОЛУЧЕНИЯ И СОДЕРЖАЩАЯ ЕЕ СМОЛЯНАЯ КОМПОЗИЦИЯ 2009
  • Накагава Кенити
  • Морита Таканори
RU2509728C2
СПОСОБ ПРОИЗВОДСТВА САХАРА 2000
  • Рейсиг Ричард К.
  • Маннапперума Джатал Д.
  • Донован Майкл
  • Джэнсен Роберт П.
  • Главацек Марк
  • Уокер Гордон
  • Уилльямс Джон К.
RU2260056C2
СПОСОБ ПОЛУЧЕНИЯ ФОТОГРАФИЧЕСКОГО ЖЕЛАТИНА 1991
  • Гуцалюк Валерий Михайлович[Ua]
  • Каталевский Евгений Евгеньевич[Ru]
  • Ушаков Николай Владимирович[Ru]
  • Бобров Вячеслав Федорович[Ru]
  • Игнатова Людмила Александровна[Ru]
  • Устинова Любовь Николаевна[Ru]
RU2025476C1
СПОСОБ ПОЛУЧЕНИЯ ГАЛЬВАНИЧЕСКОГО КОМПОЗИЦИОННОГО ПОКРЫТИЯ, СОДЕРЖАЩЕГО НАНОАЛМАЗНЫЕ ПОРОШКИ 2012
  • Полушин Николай Иванович
  • Журавлев Владимир Васильевич
  • Маслов Анатолий Львович
  • Степарева Нина Николаевна
RU2487201C1
СПОСОБ ОЧИСТКИ ЖИДКИХ УГЛЕВОДОРОДОВ ОТ ВЫСОКОМОЛЕКУЛЯРНЫХ ПРИМЕСЕЙ 2016
  • Зотов Руслан Анатольевич
  • Соколов Евгений Владимирович
  • Гордеев Александр Вячеславович
RU2622404C1
Способ получения бетулина для использования в качестве адъюванта в вакцине против коронавируса SARS-CoV-2 2020
  • Исаев Артур Александрович
  • Красильников Игорь Викторович
  • Фролова Мария Евгеньевна
  • Кудрявцев Александр Викторович
  • Вахрушева Анна Владимировна
  • Иванов Александр Викторович
RU2749193C1
ПОВЕРХНОСТНО-МОДИФИЦИРОВАННЫЙ НАНОАЛМАЗ, ДИСПЕРСНАЯ КОМПОЗИЦИЯ НАНОАЛМАЗА И СПОСОБ ПРОИЗВОДСТВА ПОВЕРХНОСТНО-МОДИФИЦИРОВАННОГО НАНОАЛМАЗА 2020
  • Широ, Даисуке
  • Куме, Ацуси
RU2780325C1

Реферат патента 2011 года СПОСОБ ПОЛУЧЕНИЯ ЗОЛЯ НАНОАЛМАЗОВ

Изобретение относится к химической технологии, а именно к способам получения высокочистых активных углеродных и алмазных наноматериалов в виде коллоидно-устойчивого золя. Получают суспензию на основе наноалмазов и воды. Осуществляют обработку суспензии водным раствором щелочи. Отделяют щелочь от дисперсионной среды до получения устойчивой суспензии с рН 12. Устойчивую суспензию подвергают ультрафильтрации на трубчатом мембранном фильтре или блоке таких фильтров. Осуществляют фракционирование путем центробежного нагружения в диапазоне от 40 до 40000 g, где g - ускорение свободного падения. Изобретение позволяет исключить применение органического модификатора, упростить аппаратурное оформление, достичь концентрации конечного продукта - до 10 мас.%, его высокую чистоту и низкую электропроводность. 3 з.п. ф-лы, 1 табл.

Формула изобретения RU 2 430 016 C2

1. Способ получения золя наноалмазов, включающий получение суспензии на основе наноалмазов и воды, ее разделение на дисперсионную среду и дисперсную фазу, отличающийся тем, что перед разделением осуществляют обработку суспензии водным раствором щелочи, последующее отделение щелочи от дисперсионной среды до получения устойчивой суспензии с рН 12, которую затем подвергают ультрафильтрации на трубчатом мембранном фильтре или блоке таких фильтров.

2. Способ по п.1, отличающийся тем, что после ультрафильтрации осуществляют фракционирование путем центробежного нагружения в диапазоне от 40 до 40000 g, где g - ускорение свободного падения.

3. Способ по п.1, отличающийся тем, что в качестве трубчатого мембранного фильтра используют фильтр, выполненный из фторопласта или керамики, с размерами пор 10-500 нм.

4. Способ по п.3, отличающийся тем, что внутреннюю полость трубчатого мембранного фильтра, выполненного из фторопласта, оснащают турбулизирующим элементом.

Документы, цитированные в отчете о поиске Патент 2011 года RU2430016C2

СПОСОБ ОБРАБОТКИ НАНОАЛМАЗОВ 2003
  • Пузырь А.П.
  • Бондарь В.С.
RU2258671C2
US 6083354 A, 04.07.2000
ДОЛМАТОВ В.Ю
Детонационные наноалмазы: синтез, строение, свойства и применение
Успехи химии, 2007, т.76, №4, с.375-397
НЕВЕРОВСКАЯ А.Ю
и др
Структура дисперсионной среды и седиментационная устойчивость суспензий наноалмазов детонационного синтеза
Физика твердого тела, 2004, т.46, вып.4, с.646-648.

RU 2 430 016 C2

Авторы

Ларионова Ирина Семеновна

Глазев Дмитрий Юрьевич

Жарков Александр Сергеевич

Полева Людмила Ивановна

Кутакова Надежда Михайловна

Фролов Александр Валериевич

Даты

2011-09-27Публикация

2009-12-07Подача