Изобретение относится к химической технологии, в частности к обработке наночастиц алмазов - продукта взрывного синтеза, и может быть использовано в различных областях промышленности, где применяются детонационные наноалмазы и/или их золи с повышенной коллоидной устойчивостью и/или с минимальными размерами кластеров наночастиц при соблюдении требований высокой точности содержания последних в дисперсионной среде.
Существует проблема очистки поверхностного слоя наночастиц от различных химических элементов, являющихся продуктами взрывных технологий при получении наноалмазов, или в значительной мере замещения этих элементов. При этом уровень очистки или замещения элементов на поверхности наноалмазов существенно влияет на свойства полученных частиц, в частности на устойчивость золей и качество различных продуктов с их применением.
Известен способ отделения алмазов от дисперсионной среды путем введения электролитов. Компоненты электролитов, адсорбируясь на поверхности алмазов, с одной стороны вызывают загрязнение и, как следствие, их коагуляцию, а с другой - в осветленной жидкости обнаруживаются алмазы, обладающие повышенной седиментационной устойчивостью /Никитин Ю.И. Изучение процесса коагуляции алмазных суспензий. Синтетические алмазы, 1976, вып.4, с.17-21/.
Известный способ характеризуется значительной потерей алмазов с осветленной жидкостью и не обладает достаточной производительностью из-за длительного отстаивания осадка.
Наиболее близким является способ агрегирования частиц в гидрозолях ультрадисперсных алмазов, включающий получение водной дисперсии наночастиц взрывного синтеза (в концентрации 0,1-0,3%) диспергированием навески порошка в бидистилляте ультразвуковым диспергатором, добавление модифицирующего вещества (электролит - хлористый калий в концентрации 10-2-10-4М) и последующее разбавление дисперсии водой /Чиганова Г.А. Агрегирование частиц в гидрозолях ультрадисперсных алмазов. Коллоидный журнал, 2000, т.62, №2, с.227-277/.
К недостаткам известного способа относятся низкая технологичность из-за использования суспензий наночастиц только в малых концентрациях, что должно приводить к большим временным и энергетическим затратам при высушивании седиментационно устойчивых дисперсий и не позволять получать сухие порошки наноалмазов в количествах, достаточных для исследования их свойств и тем более для последующего применения.
Задачей изобретения является высокотехнологичное получение наноалмазов с новыми свойствами, образующих гидрозоли с повышенной коллоидной устойчивостью и расширенными технологическими качествами, в том числе:
- возможность получения гидрозолей наноалмазов без обработки ультразвуковым диспергатором;
- возможность многократного высушивания гидрозолей и восстановления их простым добавлением воды;
- возможность получения строго определенной концентрации наноалмазов в гидрозолях;
- сохранение коллоидной устойчивости частиц в гидрозолях после их кипячения или автоклавирования;
- сохранение коллоидной устойчивости частиц при замораживании и последующем оттаивании гидрозолей;
- получение в полярных растворителях органозолей с повышенной коллоидной устойчивостью частиц;
- возможность получения в маслах суспензий наноалмазов с увеличенной коллоидной устойчивостью наночастиц.
Поставленная задача решается тем, что в способе обработки наноалмазов, включающем получение суспензии на основе наноалмазов, модификатора и воды, производятся ее разделение на дисперсионную среду и осадок, добавление к осадку воды до получения суспензии и последующее ее разделение на различные по свойствам фракции наноалмазов, согласно изобретению в качестве модификатора используют органический лиганд, а именно ЭДТА или ЭГТА, обе суспензии разделяют центрифугированием, причем вторую из них - на осадок и гидрозоль, которые затем раздельно концентрируют в промпродукты с нагревом при вакуумировании до порошкообразного состояния.
Отличительные признаки:
- в качестве модификатора используют органический лиганд, а именно ЭДТА или ЭГТА (что позволяет провести массообмен на поверхности частиц наноалмазов, а процесс модификации протекает быстро при обычных температурных режимах и давлениях в неагрессивной среде);
- обе указанные суспензии разделяют центрифугированием, причем вторую из них на осадок и гидрозоль (что позволяет разделить исходный продукт на компоненты, обладающие различными свойствами);
- осадок и гидрозоль раздельно концентрируют в промпродукты с нагревом при вакуумировании до порошкообразного состояния (что позволяет получать готовые к использованию промпродукты).
Таким образом, заявляемое решение соответствует критерию «новизна». Сравнение заявляемого решения с аналогами и с другими источниками информации не позволило выявить в них признаки, отличающие заявляемое решение от прототипа, что позволяет сделать вывод о соответствии критерию «изобретательский уровень».
Примеры осуществления способа
Пример 1. Из порошка наноалмазов партии №11, синтезированных в ОФВДМ КНЦ (Красноярск), с применением ультразвукового диспергатора УЗДН 2Т (СССР) готовят 2 мас.% суспензии. К суспензии добавляют ЭДТА до концентрации 0,015-0,5 М. Смесь центрифугируют при 6000 об/мин в течение 3 мин на центрифуге Beckman J21B (США). Надосадочную жидкость отбрасывают. К осадку добавляют воду и перемешивают. Смесь центрифугируют при 15000 об/мин в течение 10 мин на центрифуге Beckman J21B, получая надосадочную жидкость (гидрозоль наноалмазов) и осадок. Гидрозоль собирают и высушивают в вакуумном роторном испарителе Unipan 350P (Польша). В зависимости от необходимости задают содержание остаточной воды и получают промпродукт в виде концентрированного гидрозоля, кека или сухого порошка черного цвета. Осадок так же высушивают в вакуумном роторном испарителе Unipan 350P, получая светлый порошок. Распределение частиц в гидрозоле и осадке составляет 40-45 и 60-55% соответственно.
Пример 2. Из порошка наноалмазов партии №7, синтезированных в ОФВДМ КНЦ (Красноярск), с применением ультразвукового диспергатора УЗДН 2Т (СССР) готовят 1 мас.% суспензии. К суспензии добавляют ЭДТА до концентрации 0,125 М. Смесь центрифугируют при 10000 об/мин в течение 3 мин на центрифуге Beckman J21B (США). Надосадочную жидкость отбрасывают. К осадку добавляют воду и перемешивают. Смесь центрифугируют при 15000 об/мин в течение 10 мин на центрифуге Beckman J21B, получая надосадочную жидкость (гидрозоль наноалмазов) и осадок. Гидрозоль собирают и высушивают в роторном испарителе Unipan 350P (Польша). В зависимости от содержания остаточной воды получают концентрированный гидрозоль, кек или сухой порошок черного цвета. Осадок так же высушивают, получая светлый порошок. В гидрозоле обнаруживается до 65±3% наночастиц исходного порошка.
Пример 3. Из порошка наноалмазов партии №7, синтезированных в ОФВДМ КНЦ (Красноярск), с применением ультразвукового диспергатора УЗДН 2Т (СССР) готовят 1 мас.% суспензии. К суспензии добавляют ЭГТА до концентрации 0,125 М. Смесь центрифугируют при 10000 об/мин в течение 3 мин на центрифуге Beckman J21B (США). Надосадочную жидкость отбрасывают. К осадку добавляют воду и перемешивают. Смесь центрифугируют при 15000 об/мин в течение 10 мин на центрифуге Beckman J21B, получая надосадочную жидкость (гидрозоль наноалмазов) и осадок. Гидрозоль собирают и высушивают в роторном испарителе Unipan 350P (Польша). В зависимости от содержания остаточной воды получают концентрированный гидрозоль, кек или сухой порошок черного цвета. Осадок так же высушивают, получая светлый порошок. В гидрозоле обнаруживается до 50±5% наночастиц исходного порошка.
Пример 4. Из порошка наноалмазов серии УДА-С, синтезированных в ФГУП ФНПЦ «Алтай» (Бийск), с применением ультразвукового диспергатора УЗДН 2Т (СССР) готовят 1 мас.% суспензии. К суспензии добавляют ЭДТА до концентрации 0,015-0,5 М. Смесь центрифугируют при 3000 об/мин в течение 2 мин на центрифуге Beckman J21B (США). Надосадочную жидкость отбрасывают. К осадку добавляют воду и перемешивают. Смесь центрифугируют 15000 об/мин в течение 10 мин на центрифуге Beckman J21B, получая надосадочную жидкость (гидрозоль наноалмазов) и осадок. Гидрозоль собирают и высушивают в роторном испарителе Unipan 350P (Польша). В зависимости от содержания остаточной воды получают концентрированный гидрозоль, кек или сухой порошок черного цвета. Осадок так же высушивают, получая светлый порошок. Количество частиц, перешедших в гидрозоль, составляет 70±5%.
Пример 5. К сухому порошку наноалмазов серии УДА-С, синтезированных в ФГУП ФНПЦ «Алтай» (Бийск), в соотношении 1:4 (по объему) добавляют ЭДТА в концентрации 0,5 М. Смесь центрифугируют при 3000 об/мин в течение 2 мин на центрифуге Beckman J21B (США). Надосадочную жидкость отбрасывают. К осадку добавляют воду и перемешивают. Смесь центрифугируют 15000 об/мин в течение 10 мин на центрифуге Beckman J21B, получая надосадочную жидкость (гидрозоль наноалмазов) и осадок. Гидрозоль собирают и высушивают в роторном испарителе Unipan 350P (Польша). В зависимости от содержания остаточной воды получают концентрированный гидрозоль, кек или сухой порошок черного цвета. Осадок так же высушивают, получая светлый порошок. Количество частиц, перешедших в гидрозоль, составляет 75±5%.
Несмотря на различные исходные условия, указанные в приведенных примерах (порошок наноалмаза или его суспензия, концентрация модификатора, производитель наночастиц и т.д.), полученные предлагаемым способом наноалмазы обладают общими полезными характеристиками (приведены в таблице).
Как следует из данных, приведенных в таблице, предложенный способ позволяет получать наноалмазы, которые образуют гидрозоли, органозоли и суспензии в маслах с повышенной коллоидной устойчивостью и обладают рядом других положительных свойств.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ВЫДЕЛЕНИЯ НАНОАЛМАЗОВ ДЕТОНАЦИОННОГО СИНТЕЗА С ПОВЫШЕННОЙ КОЛЛОИДНОЙ УСТОЙЧИВОСТЬЮ | 2010 |
|
RU2458858C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОАЛМАЗОВ ВЗРЫВНОГО СИНТЕЗА С ПОВЫШЕННОЙ КОЛЛОИДНОЙ УСТОЙЧИВОСТЬЮ | 2003 |
|
RU2252192C2 |
СИНТЕТИЧЕСКИЕ АЛМАЗОСОДЕРЖАЩИЕ ВЕЩЕСТВА И СПОСОБ ИХ ВЫДЕЛЕНИЯ | 2006 |
|
RU2306258C1 |
НАНОАЛМАЗНЫЙ СОРБЕНТ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2007 |
|
RU2352387C1 |
СПОСОБ ВЫДЕЛЕНИЯ ПРИРОДНЫХ И РЕКОМБИНАНТНЫХ БЕЛКОВ И ДРУГИХ БИОЛОГИЧЕСКИХ СОЕДИНЕНИЙ | 2007 |
|
RU2366713C2 |
РАБОЧЕЕ ВЕЩЕСТВО ОГРАНИЧИТЕЛЯ ИНТЕНСИВНОСТИ МОЩНОГО ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ | 2009 |
|
RU2410737C1 |
Способ получения высококонцентрированного органозоля наночастиц серебра | 2023 |
|
RU2821522C1 |
СМАЗОЧНАЯ КОМПОЗИЦИЯ | 2007 |
|
RU2356938C2 |
СПОСОБ ПОЛУЧЕНИЯ КУБИЧЕСКИХ НАНОКРИСТАЛЛОВ АЛМАЗА | 2010 |
|
RU2547009C2 |
СПОСОБ ПОЛУЧЕНИЯ ВОДНОЙ СУСПЕНЗИИ ДЕТОНАЦИОННЫХ НАНОАЛМАЗОВ | 2010 |
|
RU2446097C1 |
Изобретение предназначено для химической промышленности и может быть использовано при получении гидрозолей, органозолей и суспензий в маслах. Порошок наноалмазов загружают в ультразвуковой диспергатор, добавляют воду и модификатор - органический лиганд. В качестве органического лиганда можно использовать ЭДТА или ЭГТА. Полученную суспензию разделяют центрифугированием на дисперсионную среду и осадок. К осадку добавляют воду до получения суспензии и разделяют центрифугированием. Полученные осадок и гидрозоль концентрируют раздельно нагревом при вакуумировании до порошкообразного состояния. При концентрировании гидрозоля в зависимости от потребности можно получить конечные продукты: концентрированный гидрозоль, кек или сухой порошок черного цвета. В результате концентрирования осадка получают светлый порошок наноалмазов. Из полученных продуктов можно получить седиментационно устойчивые гидрозоли и органозоли без применения ультразвука, не подверженные агрегированию при замораживании и оттаивании, при кипячении и автоклавировании, с возможностью многократного высушивания и восстановления. Поверхностное загрязнение наночастиц уменьшено. Изобретение позволяет получить гидрозоли с точной концентрацией наноалмазов. 2 з.п. ф-лы, 1 табл.
ЧИГАНОВА Г.А | |||
Агрегирование частиц в гидрозолях ультрадисперсных алмазов | |||
Коллоидный журнал, 2000, т.62, №2, с.272-277 | |||
Алмазная абразивная суспензия | 1991 |
|
SU1781271A1 |
СУСПЕНЗИЯ УЛЬТРАДИСПЕРСНОГО МОДИФИЦИРОВАННОГО АЛМАЗА | 1991 |
|
RU2094371C1 |
ДОЛМАТОВ В.Ю | |||
Ультрадисперсные алмазы детонационного синтеза: свойства и применение | |||
Успехи химии, 2001, т.70, №7, с.699 | |||
ВЕРЕЩАГИН А.Л | |||
Детонационные наноалмазы | |||
Барнаул, |
Авторы
Даты
2005-08-20—Публикация
2003-09-17—Подача