СПОСОБ АКТИВАЦИИ МЕТАЛЛОКСИДНЫХ КАТАЛИЗАТОРОВ СИНТЕЗА УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ Российский патент 2011 года по МПК B01J23/24 B01J23/74 B01J37/08 C01B31/00 B01J23/40 B01J37/34 B01J37/04 B82B3/00 

Описание патента на изобретение RU2430779C2

Изобретение относится к способам активации металлоксидных катализаторов, используемых в процессах синтеза углеродных нанотрубок методом каталитического пиролиза углеводородов.

Известен способ активации палладийсодержащих полимерных катализаторов гидрирования ацетиленовых спиртов, который включает воздействие ультразвуком на палладийсодержащий полимерный катализатор, нанесенный на Аl2О3. Воздействие осуществляют ультразвуком с частотой 20-22 кГц с интенсивностью ультразвукового воздействия 4-30 Вт/см2 в течение 30-180 с в толуоле (Патент РФ №2220770, МПК B01J 37/34, 2004 г.).

Недостатком такого способа является то, что при ультразвуковой обработке используется очень узкий диапазон по интенсивности. Другим недостатком способа является необходимость проведения ультразвуковой обработки в толуоле, что неприменимо для водорастворимых катализаторов. Это ограничивает аппаратурное оснащение процесса и затрудняет его реализацию.

Известен также способ активации катализатора на основе кобальта при получении катализаторов Фишера - Тропша на носителе. Способ включает обработку на первой стадии активации предшественника катализатора синтеза Фишера - Тропша на носителе, который находится в предвосстановленном состоянии в виде частиц. Предшественник содержит носитель катализатора, пропитанный кобальтом, и способную к восстановлению лабилизированную окись кобальта в обожженном состоянии, выбранную из соединений, описываемых формулами, включающими СоОаНb, где а≥1,7 и b>0, и монометаллические соединения в виде гидротальцита Соjj0,74Соjjj0,26(OH)2,01(CO)0,02×0,6Н2О. Восстановление окиси кобальта осуществляется восстанавливающим газом, представляющим собой чистый водород, с первой объемной скоростью подаваемого газа, SV1, и при первой скорости нагрева, HR1, с получением частично восстановленного предшественника катализатора. Затем обработку частично восстановленного предшественника катализатора на второй стадий активации проводят восстанавливающим газом, представляющим собой чистый водород, со второй объемной скоростью подаваемого газа, SV2, и при второй скорости нагрева, HR2, причем SV2<SV1 и/или HR2≥HR1, при условии, что когда SV2=SV1, HR2≠HR1 и, когда HR2=HR1, SV2≠SV1 (Патент РФ №2301110, МПК B01J 37/18, 2002 г.).

Таким образом, достигается получение катализаторов Фишера - Тропша с максимальной активностью, которая необходима при гидрировании пиролизных газов. Недостатком такого способа является непригодность этого способа для активации катализаторов синтеза наноуглеродных материалов. Общими существенными признаками катализаторов для получения наноуглеродных материалов является наличие в их составе оксидов металлов, не восстанавливаемых водородом при температуре синтеза УНТ. Другим недостатком является необходимость сложного аппаратурного обеспечения.

Задачей изобретения является улучшение качеств катализаторов синтеза углеродных наноматериалов.

Технический результат - повышение выхода углеродных наноматериалов.

Технический результат достигается тем, что согласно способу активации металлоксидных катализаторов синтеза углеродных наноматериалов, заключающемуся в том, что в качестве исходного материала используют соли магния и металлов VIII групп, которые обрабатывают методом термического разложения, при этом перед прокаливанием раствор прекурсора подвергают воздействию ультразвука с частотой 22 кГц и интенсивностью 50-100 Вт/см2 в течение 5-60 с, после чего раствор нагревают до температуры 600°С в течение 30 мин.

Водный раствор прекурсора готовят следующего состава, мас.%:

Шестиводный нитрат никеля 47-55 Шестиводный нитрат магния 5-7 Глицин 28-34% Дистиллированная вода остальное.

Для осуществления изобретения использовали следующие материалы и оборудование.

Нитрат никеля (II) Ni(NО3)2·6Н2O, марки «Ч».

Нитрат магния Mg(NO3)2·6H2O, марки «ЧДА».

Глицин марки «ЧДА».

Электроплитка с терморегулятором.

Печь муфельная.

Стандартная лабораторная посуда из стекла и фарфора.

Получение катализатора состава Ni(NO3)2·/Mg(NO3)2 (соответствует Примеру 1, приведенному ниже).

В стакан емкостью 250 мл из термостойкого стекла внесли навеску Ni(NO3)2·6Н2O (навеска 9 г), Mg(NO3)2·6Н2O (навеска 1,2 г), глицина 6 г и 2,5 мл дист. воды. Эту смесь при перемешивании в течение около 15 минут подогрели до 60°С до полного растворения всех компонентов.

Полученный раствор прекурсоров подвергали воздействию ультразвука с частотой 22 кГц и интенсивностью 50 Вт/см2 в течение 30 с, с целью равномерного распределения активного компонента (Ni) по поверхности носителя (Mg). Активированный ультразвуком раствор прекурсоров в виде прозрачного раствора перенесли в фарфоровую чашку емкостью 250 мл и поместили в печь с температурой до 600°С на 15 мин. Получилась твердая рыхлая пена, которую выдержали еще 15 мин при температуре печи для окончательного выжигания органических компонентов. Затем полученный катализатор измельчили в ступке до прохождения через сито 0,1 мм.

Пример 1

Способ активации Ni/Mg катализатора

В химический стакан из термостойкого стекла помещали навеску Ni(NO3)2·6Н2O (навеска 9 г), Mg(NO3)2·6Н2О (навеска 1,2 г), глицина 6 г и 2,5 мл дист. воды. Эту смесь при перемешивании в течение около 15 минут подогрели до 60°С до полного растворения всех компонентов.

Полученный раствор прекурсоров подвергали воздействию ультразвука с частотой 22 кГц и интенсивностью 50 Вт/см2 в течение 30 с, с целью равномерного распределения активного компонента (Ni) по поверхности носителя (Mg). Активированный ультразвуком раствор прекурсоров в виде прозрачного раствора перенесли в фарфоровую чашку емкостью 250 мл и поместили в печь с температурой до 600°С на 15 мин. Получилась твердая рыхлая пена, которую выдержали еще 15 мин при температуре печи для окончательного выжигания органических компонентов. Затем полученный катализатор измельчили в ступке до прохождения через сито 0,1 мм.

Полученный катализатор представляет собой мелкодисперсный порошок светло-серого цвета с гранулометрическим составом от 30 до 80 мкм (см. фиг.1 иллюстраций).

Использование такого катализатора в процессе синтеза УНТ методом каталитического пиролиза углеводородов позволяет увеличить удельный выход УНМ на 50%.

Сопоставление экспериментальных данных

Тестирование синтезированных катализаторов проводили в опытно промышленной установке получения углеродных нанотрубок («Нанотехцентр», г.Тамбов). Навески катализаторов (по 150 мг) помещали на подложки из графитовой фольги «Графлекс) и размещали образцы на рабочей поверхности реактора. После подготовки реактора температуру поднимали до 650°С, реактор продували аргоном и затем пускали газ - источник углерода, в качестве которого использовали техническую пропан-бутановую смесь. Процесс выращивания УНТ проводили в течение 40 мин, после чего реактор продували аргоном. После охлаждения реактора подложки с образцами полученных УНТ извлекали, продукты взвешивали. Выход УНТ определяли как (М-м)/м (грамм углерода на 1 г исходного катализатора), где М - масса продукта (УНТ, содержащих примесь катализатора), м - масса исходного катализатора (обычно 0,150 г). Данные приведены в табл.1.

Таблица 1 Вид катализатора Удельный выход УНМ на неактивированном катализаторе, г/г Удельный выход УНМ на активированном в УЗ катализаторе, г/г Ni/Mg 13,4 20,5

Способ активации обеспечивает увеличение выхода углеродного наноструктурного материала, полученного на активированных ультразвуком катализаторах, на 30-50% при незначительных увеличениях экономических затрат.

Похожие патенты RU2430779C2

название год авторы номер документа
СПОСОБ АКТИВАЦИИ МЕТАЛЛОКСИДНЫХ КАТАЛИЗАТОРОВ СИНТЕЗА УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ 2010
  • Ткачев Алексей Григорьевич
  • Буракова Елена Анатольевна
  • Бураков Александр Евгеньевич
  • Иванова Ирина Владимировна
  • Блохин Александр Николаевич
RU2443470C2
СПОСОБ АКТИВАЦИИ КАТАЛИЗАТОРОВ НА ОСНОВЕ КОБАЛЬТА 2002
  • Ван Берг Питер Якобус
  • Визаги Якобус Лукас
  • Ван Де Лусдрехт Ян
  • Ван Дер Валт Тьарт Юргенс
  • Солли Йохан Коенрад
  • Велтман Ханс Марсел
RU2301110C2
СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛОКСИДНЫХ КАТАЛИЗАТОРОВ ДЛЯ ВЫРАЩИВАНИЯ УГЛЕРОДНЫХ НАНОТРУБОК ИЗ ГАЗОВОЙ ФАЗЫ 2010
  • Ткачев Алексей Григорьевич
  • Мележик Александр Васильевич
  • Иванова Ирина Владимировна
RU2476268C2
МЕТАЛЛОКСИДНЫЕ КАТАЛИЗАТОРЫ ДЛЯ ВЫРАЩИВАНИЯ УГЛЕРОДНЫХ НАНОТРУБОК ИЗ ГАЗОВОЙ ФАЗЫ 2009
  • Ткачев Алексей Григорьевич
  • Мележик Александр Васильевич
  • Дьячкова Татьяна Петровна
  • Ткачев Максим Алексеевич
RU2415706C1
СПОСОБ РЕГЕНЕРАЦИИ КОБАЛЬТОВОГО КАТАЛИЗАТОРА СИНТЕЗА ФИШЕРА-ТРОПША 2008
  • Ван Де Лусдрехт Ян
  • Саиб Абдул Мутхалиб
RU2456080C2
МЕТАЛЛОКСИДНЫЙ КАТАЛИЗАТОР ДЛЯ ВЫРАЩИВАНИЯ ПУЧКОВ УГЛЕРОДНЫХ НАНОТРУБОК ИЗ ГАЗОВОЙ ФАЗЫ 2010
  • Ткачев Алексей Григорьевич
  • Мележик Александр Васильевич
RU2427423C1
СПОСОБ ПРИГОТОВЛЕНИЯ НАНЕСЕННОГО КАТАЛИЗАТОРА СИНТЕЗА ФИШЕРА-ТРОПША НА ОСНОВЕ КОБАЛЬТА 2008
  • Висаги Якобус Лукас
  • Бота Ян Маттеус
  • Куртзен Йоханнес Герхардус
  • Датт Майкл Стивен
  • Бомер Алта
  • Ван Де Лусдрехт Ян
  • Саиб Абдул Мутхалиб
RU2458100C2
СПОСОБ ПРИГОТОВЛЕНИЯ НАНЕСЕННОГО КАТАЛИЗАТОРА СИНТЕЗА ФИШЕРА-ТРОПША НА ОСНОВЕ КОБАЛЬТА 2008
  • Висаги Якобус Лукас
  • Бота Ян Маттеус
  • Куртзен Йоханнес Герхардус
  • Датт Майкл Стивен
  • Бомер Алта
  • Ван Де Лусдрехт Ян
  • Саиб Абдул Мутхалиб
RU2456329C2
СПОСОБ ОЗОНИРОВАНИЯ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ 2013
  • Дьячкова Татьяна Петровна
  • Мележик Александр Васильевич
  • Горский Сергей Юрьевич
  • Ткачев Алексей Григорьевич
RU2569096C2
Способ сорбционной очистки водных сред от органических веществ и ионов тяжелых металлов 2018
  • Ткачев Алексей Григорьевич
  • Бураков Александр Евгеньевич
  • Буракова Ирина Владимировна
  • Бабкин Александр Викторович
  • Нескоромная Елена Анатольевна
RU2689616C1

Иллюстрации к изобретению RU 2 430 779 C2

Реферат патента 2011 года СПОСОБ АКТИВАЦИИ МЕТАЛЛОКСИДНЫХ КАТАЛИЗАТОРОВ СИНТЕЗА УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ

Изобретение относится к области катализаторов. Описан способ активации металлоксидных катализаторов синтеза углеродных наноматериалов, заключающийся в том, что в качестве исходного материала используют нитрат магния и соли металлов VIII группы, которые обрабатывают методом термического разложения, заключающимся в том, что осуществляют прокаливание водного раствора прекурсоров, которые перед прокаливанием подвергают воздействию на раствор ультразвуком с частотой 22 кГц и интенсивностью 50-100 Вт/см2 в течение 5-60 с, после чего раствор нагревают до температуры 600°С в течение 30 мин. Технический результат - описанный способ активации обеспечивает увеличение выхода углеродных наноматериалов. 1 з.п. ф-лы, 1 табл., 1 ил.

Формула изобретения RU 2 430 779 C2

1. Способ активации металлоксидных катализаторов синтеза углеродных наноматериалов, заключающийся в том, что в качестве исходного материала используют нитрат магния и соли металлов VIII группы, которые обрабатывают методом термического разложения, заключающимся в том что осуществляют прокаливание водного раствора прекурсоров, которые перед прокаливанием подвергают воздействию на раствор ультразвуком с частотой 22 кГц и интенсивностью 50-100 Вт/см2 в течение 5-60 с, после чего раствор нагревают до температуры 600°С в течение 30 мин.

2. Способ активации металлоксидных катализаторов синтеза углеродных наноматериалов по п.1, отличающийся тем, что водный раствор прекурсора готовят следующего состава, мас.%:
Шестиводный нитрат никеля 47-55 Шестиводный нитрат магния 5-7 Глицин 28-34 Дистиллированная вода остальное

Документы, цитированные в отчете о поиске Патент 2011 года RU2430779C2

RU 2007107610 А, 10.09.2008
СПОСОБ ПОДГОТОВКИ ПАЛЛАДИЕВОГО КАТАЛИЗАТОРА ДЛЯ СИНТЕЗА ЭТИЛОВОГО ЭФИРА 10-(2,3,4-ТРИМЕТОКСИ-6-МЕТИЛФЕНИЛ) ДЕКАНОВОЙ КИСЛОТЫ 1996
  • Сульман Михаил Геннадьевич
  • Шкилева Ирина Павловна
  • Сульман Эсфирь Михайловна
RU2102136C1
Способ переработки углеводородовпуТЕМ АлКилиРОВАНия 1977
  • Ричард Говард Джонс
SU831069A3
KR 2007110739 A, 20.11.2007.

RU 2 430 779 C2

Авторы

Ткачев Алексей Григорьевич

Артемов Владимир Николаевич

Ткачев Максим Алексеевич

Даты

2011-10-10Публикация

2009-11-03Подача