СПОСОБ ОЗОНИРОВАНИЯ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ Российский патент 2015 года по МПК C01B31/02 B82B3/00 B82Y40/00 

Описание патента на изобретение RU2569096C2

Изобретение относится к технологии углеродных наноматериалов, конкретно к технологии получения углеродных наноматериалов, на поверхности которых имеются кислородсодержащие функциональные группы.

Для обеспечения химической совместимости и распределения частиц углеродных наноматериалов (УНМ), в частности углеродных нанотрубок (УНТ), углеродных нановолокон (УНВ), графена, в полярных растворителях и полимерных матрицах на поверхности частиц УНМ формируют полярные группы - гидроксильные, карбоксильные, карбонильные, лактонные и другие. Обычно это достигается путем окисления УНМ различными реагентами, например азотной кислотой, перекисью водорода, персульфатом аммония, перманганатом калия, гипохлоритом натрия, озоном и другими сильными окислителями. Окислительная обработка УНМ может проводиться как в жидкой фазе растворами окислителей, так и газообразными окислителями. При этом газофазная функционализация УНМ полярными группами в ряде случаев оказывается наиболее выгодной по расходу реагентов и экологической чистоте процесса. Одним из наиболее сильных окислителей является озон, который, обычно в смеси в кислородом или воздухом, в ряде работ применяли для функционализации углеродных нанотрубок.

Так, в патенте ЕР 1817447, МПК С01В 31/00; С07С 27/06, 2007, окислительную функционализацию УНТ проводили путем многочасовой обработки озонированным воздухом при комнатной температуре (хотя заявляется диапазон температур от 0 до 100°C). Полученные функционализованные УНТ по концентрации поверхностных групп сравнимы с УНТ, обработанными кипячением в азотной кислоте. Однако в отличие от обработки азотной кислотой, которая приводит к потере массы УНТ, при обработке озоном происходит некоторый прирост массы за счет присоединения кислородсодержащих групп.

Общими существенными признаками рассмотренного и заявляемого способа является обработка УНТ озоном в газовой фазе. Недостатком рассмотренного способа является то, что простая обработка УНТ озоном в отсутствие веществ, ускоряющих взаимодействие УНТ с озоном, недостаточно эффективна и требует большого времени.

В ряде публикаций для повышения эффективности обработку озоном проводили в присутствии веществ или физических полей, активирующих молекулу озона и таким образом ускоряющих функционализацию поверхности УНМ. Так, в работе Najafi Е., Kim J.-Y., Han S.-H., Shin K. UV-ozone treatment of multi-walled carbon nanotubes for enhanced organic solvent dispersion // Colloids and Surfaces A: Physicochem. Eng. Aspects, 2006, vol.284-285, p.373-378, навеску УНТ помещали в ультрафиолетовый генератор озона, в котором при действии жесткого УФ-излучения происходило образование озона из кислорода воздуха и одновременно диссоциация молекул кислорода и озона с отщеплением атомарного кислорода. Периодически порошок УНТ перемешивали для обеспечения равномерной экспозиции. Обработку УНТ в ультрафиолетовом озонаторе проводили в течение от 30 мин до 3 часов при комнатной температуре. В результате получили многократное увеличение растворимости обработанных УНТ в различных полярных органических растворителях. Активация УФ-излучением существенно повысила эффективность озонирования УНТ. Общими существенными признаками рассмотренного и заявляемого способа является обработка УНТ озоном в газовой фазе при наличии фактора, активирующего озон.

Недостатком рассмотренного способа является то, что применение УФ-излучения для активации озона плохо масштабируется, поскольку атомарный кислород является короткоживущей частицей, а УФ-излучение не проходит вглубь слоя УНТ. В результате реакция происходит только в поверхностном слое УНТ. Даже при перемешивании слоя УНТ эффективность использования энергии УФ-излучения будет уменьшаться по мере увеличения масштаба (количества обрабатываемых УНМ). Таким образом, данный способ малопригоден для масштабного производства.

В работе Lia M., Boggs M., Beebe T.P., Huang C.P. Oxidation of single-walled carbon nanotubes in dilute aqueous solutions by ozone as affected by ultrasound // Carbon, 2008, vol.46, p.466-475, углеродные нанотрубки обрабатывали озоном, пропуская его через водную дисперсию УНТ с массовой концентрацией до 0,02%, с одновременной обработкой ультразвуком или без нее. В результате получили УНТ, образующие устойчивые коллоидные растворы в воде. Общими существенными признаками рассмотренного и заявляемого способа является обработка УНТ озоном.

Недостатком рассмотренного способа является то, что углеродные нанотрубки занимают очень большой кажущийся объем и их водную суспензию можно приготовить только с очень малой массовой концентрацией, как правило, не более 0,2-0,5%. При большей концентрации система становится слишком густой и работать с ней сложно. Это затрудняет масштабирование данного процесса. Кроме того, реакция озона с поверхностью УНТ в водном растворе недостаточно эффективна и не позволяет получить функционализованные УНТ с достаточно высокой концентрацией поверхностных окисных групп.

В работе Naeimi H., Mohajeri A., Moradi L., Rashidi A.M. Efficient and facile one pot carboxylation of multiwalled carbon nanotubes by using oxidation with ozone under mild conditions // Applied Surface Science, 2009, vol.256, p.631-635, обработку УНТ озоном проводили в растворе перекиси водорода, барботируя кислород, обогащенный озоном, через суспензию УНТ (1 г) в 30% перекиси водорода (150 мл). Эффективная окислительная функционализация поверхности УНТ достигалась за счет реакции с гидроксильными радикалами, которые образовывались при реакции озона с перекисью водорода. Обработанные УНТ хорошо растворялись в полярных органических растворителях. Общими существенными признаками рассмотренного и заявляемого способа является обработка УНТ озоном.

Недостатком рассмотренного способа является то, что в данном процессе применяется очень большое количество перекиси водорода в расчете на грамм УНТ, что делает этот процесс слишком затратным.

Наиболее близким к заявляемому изобретению является способ, описанный в заявке США №20120041226, МПК B82Y 30/00, C07C 51/255, C07C 65/00, B82Y 40/00, 2012 г., (прототип). Согласно этому способу функционализацию УНТ проводили путем их обработки газовой смесью кислорода и озона, увлажненной парами воды. Было показано, что добавка в систему паров воды значительно увеличивает эффективность окисления поверхности нанотрубок и содержание поверхностных кислородсодержащих групп за счет реакции образования гидроксильных радикалов при взаимодействии озона с водой. Функционализованные таким способом УНТ при введении в эпоксидную композицию давали материал со значительно лучшими механическими характеристиками, чем исходные нефункционализированные УНТ. Общими существенными признаками способа-прототипа и заявляемого способа является обработка углеродных нанотрубок газовой смесью, содержащей озон, в присутствии вещества, ускоряющего окисление поверхности УНТ озоном.

Недостатками рассмотренного способа является недостаточная эффективность окисления поверхности УНТ озоном и увеличения концентрации образующихся кислородсодержащих поверхностных групп в присутствии паров воды.

Задачей изобретения является обеспечение ускорения взаимодействия озона с углеродными нанотрубками и получение функционализированных углеродных нанотрубок с большей концентрацией поверхностных кислородсодержащих групп.

Поставленная задача решается тем, что согласно способу озонирования углеродных наноматериалов, включающему обработку углеродного наноматериала газовой смесью, содержащей озон в присутствии вещества, ускоряющего взаимодействие озона с поверхностью углеродного наноматериала, в качестве вещества, ускоряющего взаимодействие озона с поверхностью углеродного наноматериала, берут сильную минеральную кислоту.

Сильную минеральную кислоту вводят в виде паров в газовую смесь, содержащую озон.

Сильную минеральную кислоту предварительно адсорбируют на поверхности углеродного наноматериала.

В качестве сильной минеральной кислоты берут азотную кислоту.

В качестве сильной минеральной кислоты берут триоксид серы.

Использование в качестве вещества, ускоряющего взаимодействие озона с поверхностью углеродного наноматериала, сильной минеральной кислоты, в качестве которой может быть взята сильная кислота Бренстеда (донор протонов), в частности азотная кислота, или же сильная кислота Льюиса (акцептор электронной пары), в частности триоксид серы, обеспечивает ускорение взаимодействия озона с углеродными нанотрубками и получение функционализированных углеродных нанотрубок с большей концентрацией поверхностных кислородсодержащих групп. Механизм действия добавок сильных кислот на систему озон-углеродный наноматериал в настоящее время неизвестен. Можно предполагать, что в присутствии очень сильных кислот происходит частично образование их комплексов с озоном (протонированная форма озона или комплекс озона с триоксидом серы), окислительно-восстановительный потенциал которых выше, чем у исходного озона, и за счет этого реакционная способность по отношению к поверхности углеродных наноматериалов возрастает.

Далее приводятся данные, доказывающие возможность осуществления заявляемого способа и его эффективность. Для осуществления изобретения применялись следующие исходные вещества:

УНМ «Таунит-МД» (ООО НаноТехЦентр, Тамбов), представляющий собой цилиндрические нанотрубки внешним диаметром 30-80 нм и длиной более 20 мкм.

Безводная азотная кислота, полученная путем отгонки из смеси нитрата натрия с концентрированной серной кислотой согласно известной методике.

Олеум марки ХЧ, ТУ 2612-005-56853252-2003, содержащий 62-65% триоксида серы.

Идентификацию поверхностных кислородсодержащих функциональных групп осуществляли методом ИК-спектроскопии.

Определение концентрации поверхностных функциональных групп в обработанных УНМ проводили методом обратного потенциометрического кислотно-основного титрования. Навеску функционализированных УНМ распределяли ультразвуком в 0,1 M растворе NaOH. Выдерживали полученную дисперсию при перемешивании в течение нескольких часов. Затем оттитровывали 0,1 M раствором соляной кислоты. Количество кислотных функциональных групп (карбоксильных), приходящееся на единицу массы УНМ, определяли по убыли концентрации щелочи.

Заявляемое изобретение иллюстрируется следующими графическими материалами:

На фиг.1 показан ИК-спектр УНМ «Таунит-МД», окисленного смесью озонированного воздуха с парами азотной кислоты;

На фиг.2 показано изменение степени функционализации УНМ «Таунит-МД» карбоксильными группами в ходе окисления смесью озонированного воздуха с парами безводной азотной кислоты (1) и смесью озонированного воздуха с парами воды (2) способом, описанным в заявке США №20120041226;

На фиг.3 показано изменение степени функционализации УНМ «Таунит-МД» карбоксильными группами в ходе окисления смесью озонированного воздуха с триоксидом серы;

На фиг.4 показан ИК-спектр УНМ «Таунит-МД», окисленного смесью озонированного воздуха с триоксидом серы;

На фиг.5 показано изменение степени функционализации карбоксильными группами в ходе озонированным воздухом УНМ «Таунит-МД» с предварительно адсорбированным на его поверхности триоксидом серы;

Далее приводятся конкретные примеры реализации изобретения.

Пример 1

10 г УНМ «Таунит-МД» помещали в проточный сосуд, через который продувалась смесь озонированного воздуха с парами безводной азотной кислоты (кислота Бренстеда) со скоростью 1 м3/ч в течение 1-8 часов.

На фиг.1 представлен ИК-спектр озонированного материала. На нем идентифицируются пики, свидетельствующие о наличии алкильных (2926 и 2854 см-1), гидроксильных (3447 см-1), карбонильных (1637 см-1) и карбоксильных (1719 см-1) групп. Следовательно, данный тип обработки способствует появлению на поверхности УНМ кислородсодержащих поверхностных групп.

По данным титриметрии (фиг.2) уже при 1-часовом окислении данным способом на поверхности УНМ присутствует более 0,1 ммоль/г карбоксильных групп. Для сравнения окисление УНМ «Таунит-МД» проведено смесью озонированного воздуха с парами воды способом, описанным в заявке США №20120041226. С позиций степени функционализации карбоксильными группами заявляемый способ показывает в 2-3 раза большую эффективность.

Пример 2

10 г УНМ «Таунит-МД» помещали в проточный сосуд, через который продувалась смесь озонированного воздуха с триоксидом серы (кислота Льюиса) со скоростью 1 м3/ч в течение 1-8 часов.

В данном случае степень функционализации УНМ, рассчитанная по данным титриметрии, в 1,5-2 раза выше, чем при окислении способом, описанным в заявке США №20120041226 (фиг.3). Количество карбоксильных групп на поверхности УНМ несколько ниже, чем при использовании паров безводной азотной кислоты в качестве активатора процесса (см. пример 1).

Также при озонировании УНМ озоново-воздушной смесью в присутствии трирксида серы несколько изменяется качественный состав функциональных групп присутствующих на поверхности окисленного материала. По данным ИК-спектроскопии (фиг.4) помимо гидроксильных, карбонильных и карбоксильных групп, присутствуют поверхностные образования состава -O-C-O- (1100-1200 см-1). Пик, соответствующий карбоксильной группе (1747 см-1), на спектрах окисленного данным способом материала действительно менее интенсивен, чем при активации процесса парами безводной азотной кислоты.

Таким образом, сильные минеральные кислоты активируют окисление УНМ озоном. Однако состав поверхностных функциональных групп зависит от вида активатора процесса (кислота Бренстеда или кислота Льюиса). Следует ожидать, что оба типа активации применимы. УНМ с большим количеством COOH-групп подойдут в качестве модификаторов к одним типам полимерных матриц, УНМ с поверхностными образованиями (-O-C-O-) - к другим типам.

Пример 3

10 г УНМ «Таунит-МД» помещали в проточный сосуд, через который сначала в течение 1 ч пропускали триоксид серы, полученный испарением олеума, а затем продувался озонированный воздух со скоростью 1 м3/ч в течение 1-8 часов.

Окисленные материалы имели приблизительно такую же степень функционализации карбоксильными группами (фиг.5), как и при обработке способом, приведенном в примере 2.

Следовательно, активация процесса озонирования происходит не только при введении триоксида серы в смесь озона с воздухом, но и при его предварительной адсорбции на поверхности УНМ.

Похожие патенты RU2569096C2

название год авторы номер документа
СПОСОБ ФУНКЦИОНАЛИЗАЦИИ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ 2012
  • Дьячкова Татьяна Петровна
  • Мележик Александр Васильевич
  • Горский Сергей Юрьевич
  • Рухов Артем Викторович
  • Ткачев Алексей Григорьевич
RU2529217C2
Способ получения дисперсий углеродных наноматериалов 2016
  • Мележик Александр Васильевич
  • Меметов Нариман Рустемович
  • Ткачев Алексей Григорьевич
RU2618881C1
СПОСОБ МОДИФИЦИРОВАНИЯ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ 2013
  • Ткачев Алексей Григорьевич
  • Мележик Александр Васильевич
  • Дьячкова Татьяна Петровна
RU2548083C2
ГАЗОРАЗРЯДНЫЙ МОДИФИКАТОР УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ БАРАБАННОГО ТИПА 2016
  • Вагапов Вадим Аскерович
  • Демичева Ольга Валентиновна
RU2648273C2
СПОСОБ ПОЛУЧЕНИЯ ДИСПЕРСИЙ УГЛЕРОДНЫХ НАНОТРУБОК 2012
  • Ткачев Алексей Григорьевич
  • Мележик Александр Васильевич
  • Однолько Валерий Григорьевич
RU2531172C2
СПОСОБ МОДИФИЦИРОВАНИЯ УГЛЕРОДНЫХ НАНОТРУБОК 2012
  • Ткачев Алексей Григорьевич
  • Мележик Александр Васильевич
  • Дьячкова Татьяна Петровна
  • Аладинский Алексей Александрович
RU2528985C2
Углеродные нанотрубки и способ получения углеродных нанотрубок 2017
  • Красновский Александр Николаевич
  • Кищук Петр Сергеевич
RU2669271C1
ДИСПЕРСИЯ УГЛЕРОДНЫХ НАНОТРУБОК 2011
  • Ткачев Алексей Григорьевич
  • Мележик Александр Васильевич
  • Артемов Владимир Николаевич
  • Ткачев Максим Алексеевич
  • Михалева Зоя Алексеевна
RU2494961C2
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ С НАНЕСЁННЫМ ДИОКСИДОМ КРЕМНИЯ 2012
  • Чесноков Владимир Викторович
  • Пармон Валентин Николаевич
  • Чичкань Александра Сергеевна
RU2516409C2
СПОСОБ ДИСПЕРГИРОВАНИЯ УГЛЕРОДНЫХ НАНОТРУБОК УЛЬТРАЗВУКОМ 2017
  • Ткачев Алексей Григорьевич
  • Таров Дмитрий Владимирович
  • Таров Владимир Петрович
  • Шубин Игорь Николаевич
  • Меметов Нариман Рустемович
RU2692541C2

Иллюстрации к изобретению RU 2 569 096 C2

Реферат патента 2015 года СПОСОБ ОЗОНИРОВАНИЯ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ

Изобретение может быть использовано для получения функционализированных углеродных наноматериалов. Углеродные нанотрубки озонируют в проточном сосуде в присутствии трёхокиси серы или азотной кислоты, ускоряющих воздействие озона на их поверхность. Трёхокись серы или азотную кислоту подают в сосуд с нанотрубками перед подачей озонированного воздуха. В альтернативном варианте через проточный сосуд пропускают озонированный воздух с добавкой паров трёхокиси серы или азотной кислоты со скоростью 1 м3/ч в течение 1-8 ч. Технический результат: увеличение концентрации поверхностных кислородсодержащих групп. 5 ил., 3 пр.

Формула изобретения RU 2 569 096 C2

Способ озонирования углеродных нанотрубок (УНТ) путем окислительной обработки воздействием на них озоном, отличающийся тем, что воздействие ведут в присутствии вещества, ускоряющего воздействие озона с их поверхностью, в качестве которого используют трехокись серы или азотную кислоту, в проточном сосуде, причем трехокись серы или азотную кислоту подают в сосуд, содержащий УНТ, перед подачей озонированного воздуха, или же пропускают через проточный сосуд озонированный воздух с добавкой паров трехокиси серы или азотной кислоты со скоростью 1 м3/ч в течение 1-8 ч.

Документы, цитированные в отчете о поиске Патент 2015 года RU2569096C2

Приспособление для суммирования отрезков прямых линий 1923
  • Иванцов Г.П.
SU2010A1
ФУНКЦИОНАЛИЗОВАННЫЕ НАНОТРУБКИ 1997
  • Фишер Алан
  • Хоч Роберт
  • Мой Дэвид
  • Лу Минг
  • Мартин Марк
  • Ниу Чун Минг
  • Огата Наоя
  • Теннент Говард
  • Донг Ливен
  • Сун Дзи
  • Хелмз Лэрри
  • Джеймисон Фабиан
  • Лианг Пам
  • Симпсон Дэвид
RU2200562C2
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ МЕТОДОМ ХИМИЧЕСКОГО ОСАЖДЕНИЯ ИЗ ГАЗОВОЙ ФАЗЫ 2010
  • Ткачев Алексей Григорьевич
  • Мележик Александр Васильевич
  • Рухов Артем Викторович
  • Туголуков Евгений Николаевич
  • Филатова Елена Юрьевна
  • Ткачев Максим Алексеевич
RU2434085C1
RU 2008121393 А, 27.12.2009
Изложница с суживающимся книзу сечением и с вертикально перемещающимся днищем 1924
  • Волынский С.В.
SU2012A1
US 8187566 B2, 29.05.2012
Пломбировальные щипцы 1923
  • Громов И.С.
SU2006A1

RU 2 569 096 C2

Авторы

Дьячкова Татьяна Петровна

Мележик Александр Васильевич

Горский Сергей Юрьевич

Ткачев Алексей Григорьевич

Даты

2015-11-20Публикация

2013-09-16Подача