СПОСОБ ПОЛУЧЕНИЯ ЦЕЛЛЮЛОЗНЫХ МНОГОКОМПОНЕНТНЫХ ВОЛОКОН Российский патент 2011 года по МПК D01F2/00 D01F2/10 D01F1/10 D01D5/06 D01D1/09 D01F8/02 

Описание патента на изобретение RU2431004C2

Изобретение касается способа получения целлюлозных многокомпонентных волокон с уменьшенной набухаемостью и повышенной стойкостью к мокрому истиранию.

Уровень техники

Вискозные волокна вследствие включения второго компонента могут претерпевать значительное повышение набухаемости, проявляемое в возможности удерживания воды (WRV) (ВУВ) (M. Einzmann et al.; Lenzinger Berichte 84 (2005) 42-49). Примеры уменьшения ВУВ неизвестны.

Добавление второго полимера к раствору целлюлозы в N-метилморфолин-N-оксид-моногидрате (NMMO) способствует получению лиоцельных волокон с дискретным введением второго компонента в поры системы, которые имеют повышенную набухаемость независимо от того, обладает ли второй компонент гидрофильными или гидрофобными свойствами (M. Einzmann et al.; Lenzinger Berichte 84 (2005) 42-49; F. Meister et al.; Lenzinger Berichte 78 (1998) 59-64; Ch. Michels; Abschlussbericht zum BMWA-Projekt “Modelluntersuchungen zum Lyocell-Prozess”, Reg.Nr. 1077/03 (2005) 13-19).

В международной заявке WO 98/09009 описывают добавку линейных синтетических полимеров, например полиэтилена НП, к раствору целлюлозы в NММО. Хотя добавленный полимер является гидрофобным и при диспергировании существует в расплавленном виде (рабочие температуры выше температуры плавления добавляемого полимера), в этом случае также происходит образование островков матричной структуры с неизменной или повышенной набухаемостью. Исследования лиоцельных волокон или модифицированных лиоцельных волокон показали, что между их ВУВ и стойкостью к мокрому истиранию (NSB) (СМИ) существует двойная логарифмическая связь (Ch. Michels; Abschlussbericht zum BMWA-Projekt “Modelluntersuchungen zum Lyocell-Prozess”, Reg.Nr. 1077/03 (2005) 21).

Только с помощью последующего получения производных целлюлозного волокна с гидрофобными заместителями достигают снижения набухаемости и повышения СМИ.

Способы получения лиоцельных волокон из ионных жидкостей описаны в патенте Германии DE 10 2004 031 025 B3, причем эти целлюлозные волокна характеризуются набухаемостью, сравнимой с лиоцельными волокнами, изготовленными по процессу в NММО.

В международной заявке WO 2005/098546 А2 описывают получение смесей из, по меньшей мере, двух различных полимеров или сополимеров с, по меньшей мере, одной ионной жидкостью. При этом полимеры в отдельности растворяют непосредственно в почти безводных ионных жидкостях, полимерные растворы смешивают и получают поливные пленки из полимерной смеси осаждением с водными средами и характеризуют их. Получение волокон не описано, также не приводят свидетельств о набухаемости полученных полимерных смесей.

Задача изобретения

Задачей данного изобретения является создание простого способа получения целлюлозных многокомпонентных волокон с уменьшенной набухаемостью и повышенной стойкостью к мокрому истиранию.

Эта задача в способе согласно изобретению решается тем, что 75-25 объемных % целлюлозы и 25-75 объемных %, по меньшей мере, одного другого волокнообразующего полимерного компонента диспергируют в водосодержащей ионной жидкости при добавлении стабилизаторов, удаляют максимально воду при помощи сдвига, подвода тепла и вакуума, полученный микроскопически гомогенный раствор формуют через, по меньшей мере, одну фильеру в волокно/пучок волокон, направляют его через кондиционированный зазор при вытягивании, осаждают ориентированную струю раствора путем обработки термостатированным раствором, который смешивают с ионной жидкостью, который представляет собой осадитель для целлюлозы и другого волокнообразующего полимерного компонента, при спинодальном расслоении, удаляют ориентированные струи раствора из осадительной ванны и затем подвергают последующей обработке.

Неожиданно было найдено, что ионные жидкости, которые содержат целлюлозу и определенный волокнообразующий полимер, как, например, полиакрилонитрил (ПАН) или сополимер полиакрилонитрила, в известной области концентраций, в состоянии образовывать не матрично-островную структуру, а матрично-матричную структуру, т.е. две отдельные непрерывные фазы, которые при спинодальном расслоении при осаждении сохраняются. После отделения целлюлозы с помощью куоксама (реактива Швейцера) остается структура волокна из ПАН (сравнительная фиг.1). Очевидное следствие состоит в том, что набухаемость явно понижается, но СМИ возрастает. Как видно из примера 2 (фиг.2), здесь также сохраняется двойная логарифмическая связь, которая в области 0-75 об.% ПАН подчиняется уравнению

ln СМИ=39,772-8,686 (ln ВУВ)

с R=0,998. Из данных о прочности на разрыв сухого и мокрого (волокна) в зависимости от состава в об.% (фиг.3), можно сделать вывод, что при смешивании 50 об.% ПАН имеет место инверсия фаз. При доле >50 об.% целлюлозы соотношение σсухмокр≥1, при доле >50 об.% ПАН σсухмокр≤1.

Далее, оказалось благоприятным, когда второй полимер один образует низковязкий раствор с ионной жидкостью и вследствие этого является легко диспергируемым. Соотношение вязкостей при нулевом сдвиге системы целлюлоза/второй полимер должно четко лежать выше 1, предпочтительно выше 10.

Пригодным целлюлозным компонентом оказалась клетчатка из древесины, хлопка и других однолетних растений, полученная по сульфитному, сульфатному или предгидролизному сульфатному способу. Способы отбеливания целлюлозы при этом имеют подчиненное значение.

В качестве второго полимера оптимальными оказались полиакрилонитрил (ПАН) и сополимеры полиакрилонитрила, например, с 6 масс.% метилового эфира акриловой кислоты. Второй компонент может быть в форме порошка или волокна (Dolanit®, Dolan®, Dralon®, Orlon®, волокно вольприла и т.д.) и предпочтительно должен обладать гидрофобными свойствами.

В качестве ионных жидкостей были опробованы производные имидазола, как 1-бутил-3-метилимидазолхлорид (BMIMCl), 1-этил-3-метилимидазолхлорид (EMIMCl), 1-бутил-3-метилимидазолацетат (BMIMAc), 1-этил-3-метилимидазолацетат (EMIMAc).

Стабилизация полимерных растворов происходит посредством регулирования в них концентрации ионов водорода (значения pH) нелетучим основанием, например гидроксидом натрия или полиэтиленимином и, в случае необходимости, добавки пропилгаллата или подобных стабилизаторов, как таннин, п-фенилендиамин, хинон.

В качестве осадителя пригодны вода и/или смешиваемые с водой спирты, которые могут содержать вплоть до 50% ионных жидкостей, используемых в качестве растворителя.

Изобретение может быть пояснено с помощью следующих примеров.

ПРИМЕРЫ

Пример 1

Получение растворов целлюлозы - второго полимера в ионных жидкостях и их характеристика и прядение волокон происходило по следующему общему способу.

Требуемое количество целлюлозы и волокон второго полимера смешивали соответственно заданному соотношению смеси, в модуле ванны (соотношение растворов) (Flottenverhältnis) 1:20 в воде размельчали посредством устройства Ultra-Turrax и обезвоживали отжиманием до около 35 мас.%. Необходимое количество отжатой полимерной смеси, соответствующее желаемому содержанию твердого вещества полимерного раствора, вносили в ионную жидкость, содержащую 20 мас.% воды и стабилизаторы, и диспергировали, и посредством добавки 0,1 молярного водного раствора NaOH устанавливали значение pH >8 водной суспензии.

Если второй полимер имел форму порошка, целлюлозу отдельно размельчали в воде и отжимали. Порошкообразный второй полимер диспергировали непосредственно в ионной жидкости, содержащей 30 мас.% воды и стабилизаторы, затем вводили отжатую целлюлозу и диспергировали, и посредством добавки 0,1 молярного водного раствора NaOH устанавливали значение pH >8 водной суспензии.

После помещения суспензии в вертикальный смеситель при сильном сдвиге, медленно повышающейся температуре от 90 до 130°С и пониженном давлении от 850 до 5 мбар при полном удалении воды получали гомогенный полимерный раствор. Время растворения во всех случаях составляло 90 мин. Растворы оценивали по их микрофотографиям в поляризованном свете и характеризовали реологически. Результаты приведены в таблице 1.

Таблица 1 Второй полимер - полимерное соотношение целлюлоза/второй полимер (мас.%) Растворитель Содержание твердого вещества (%) η 085°С
(Па·с)
1.1 Гомополимер ПАН - 80/20 BMIMCl 13,9 41760 1.2 Сополимер ПАН - 80/20 BMIMCl 14,1 39800 1.3 Гомополимер ПАН - 80/20 BMIMAc ПАН не растворяется 1.4 Гомополимер ПАН - 60/40 EMIMCl 20,3 28167 1.5 Целлюлоза-2,5-ацетат - 80/20 BMIMCl 13,1 33460 1.6 Хитин - 80/20 BMIMCl Хитин не растворяется 1.7 Хитин - 80/20 BMIMAc Хитин не растворяется 1.8 Хитозан - 80/20 BMIMCl Хитозан не растворяется 1.9 Хитозан - 80/20 BMIMAc Хитозан не растворяется 1.10 Полиамид 1465 - 80/20 BMIMCl 14,3 39380 1.11 ПЛА - 80/20 BMIMCl ПЛА не растворяется 1.12 ПЛА - 80/20 BMIMAc 13,8 325 1.13 ПЛА - 80/20 EMIMAc 14,0 650 1.14 Шерсть - 80/20 BMIMCl 12,9 8413 1.15 ПММА - 80/20 BMIMCl ПММА не растворяется 1.16 ПММА - 60/40 BMIMAc 16,8 215401 1.17 ПММА - 90/10 BMIMAc 11,0 3606 1 - Вязкость при нулевом сдвиге при 110°С
BMIMCl: 1-бутил-3-метилимидазолхлорид
EMIMCl: 1-этил-3-метилимидазолхлорид
BMIMAc: 1-бутил-3-метилимидазолацетат
EMIMAc: 1-этил-3-метилимидазолацетат
Гомополимер ПАН: Dolanit 10, полиакрилонитрильное волокно
Сополимер ПАН: сополимер с 6% метилового эфира акриловой кислоты
ПЛА: полилактид
ПММА: полиметилметакрилат

Прядение полимерных растворов происходило согласно ниже описанным способам. Требуемое количество прядильного раствора (массовый поток) подавали с температурой массы 85°С через поршневой прядильный аппарат в прядильный пакет, фильтровали, нагревали в теплообменнике до температуры прядения Θпр, подвергали релаксации в камере-сборнике и с помощью форсунок с 30 прядильными капиллярами выдавливали с соотношением L/Da 1 и выходным диаметром Da 90 мкм. Струи раствора проходили через кондиционированный воздушный зазор длиной а и дополнительно обдувались воздухом с температурой 25°С и влажностью и количеством воздуха в соответствии с таблицей 2. Ориентированный свод нитей (семейство параллельных нитей, идущих на некотором расстоянии в одной плоскости) проводили при одновременном выделении полимерной сетки в осадительную ванну с температурой 20°С, выделяли из осадительной ванны со скоростью вытяжки va=30 м/мин под углом β≈40°С, вытягивали через галеты (Galetten) и подвергали дискретной, свободной от внутренних напряжений последующей обработке путем промывания и сушки. Условия прядения для некоторых полимерных смесей, описанных в таблице 1, приведены в таблице 2 под теми же номерами.

Таблица 2
Условия прядения
Температура пряд. массы
Θпр (°C)
Воздушный зазор а
(мм)
Количество воздуха
(л/мин)
Влажность воздуха
(г/м3)
Характеристика прядения
1.1 103,5 90 35 3,0 1,7/1,3 дтекс очень хорошее 1.2 102,0 80 35 3,8 1,7/1,3 дтекс очень хорошее 1.4 109,4 110 без 9,6 1,7 дтекс очень хорошее 1.5 100,0 80 70 3,2 1,7 дтекс прядется 1.10 104,1 90 50 3,0 1,7/1,3 дтекс очень хорошее 1.14 83,9 50 60 3,2 1,7 дтекс прядется 1.16 100-130 Не прядется 1.17 88,8 70 70 3,0 1,7 дтекс прядется

Пример 2

Эвкалиптовую клетчатку (показатель «Куоксам-DP»: 556) и волокно из гомополимера полиакрилонитрила (DOLANIT 10) смешивали в различных соотношениях смеси, в модуле ванны 1:20 в воде размельчали посредством устройства Ultra-Turrax и обезвоживали с помощью отжимания до около 35 мас.%. Необходимое количество отжатой полимерной смеси, соответствующее желаемому содержанию твердого вещества полимерного раствора, вносили в BMIMCl, содержащий 20 мас.% воды и 0,03 мас.% пропилового эфира галловой кислоты, и диспергировали и получали гомогенный полимерный раствор в соответствии с вариантами, описанными в примере 2. Результаты приведены в таблице 3.

Различные микрофотографии после получения растворов показали гомогенные растворы, которые не содержали никаких частей изломанных волокон от остатков целлюлозы или ПАН. Однако с увеличением содержания ПАН микроснимки показывали возникающий эффект Тиндаля. Растворы были реологически охарактеризованы перед прядением.

Определение волокна-DP происходило аналогично определению чистого целлюлозного волокна, принимая во внимание навеску целлюлозы согласно используемому соотношению смеси. Целлюлозу селективно выделяли из волокна с помощью куоксама, в то время как полиакрилонитрил (ПАН) в куоксаме нерастворим. При этом после селективного процесса растворения в куоксаме сохранялась структура волокна оставшегося ПАН (см. фиг.1).

Таблица 3
Растворы целлюлозы - ПАН, различающиеся соотношениями смеси.
Соотношение полимеров
целлюлоза/ПАН (мас.%)
Содержание твердого вещества в полимерном растворе (%) η085°С
(Па·с)
Волокно- DP
2.1 100/0 (сравнит. пример) 11,2 14530 509 2.2 90/10 12,1 14770 484 2.3 80/20 13,9 41760 465 2.4 70/30 15,2 29860 441 2.5 65/35 16,5 45574 447 2.6 60/40 17,2 39307 474 2.7 50/50 19,2 29500 430

Из полимерных растворов с помощью поршневого прядильного аппарата по сухому/мокрому процессу прядения в соответствии со способами, описанными в примере 1, пряли целлюлозные многокомпонентные волокна. Условия прядения и данные о волокне полученных волокон приведены далее и в таблице 4.

Общие условия прядения:

Диаметр устья сопла: 90 мкм

Число капилляров сопла: 30

Скорость вытягивания: 30 м/мин

Температура осадительной ванны: 20°С

Таблица 4
Условия прядения и данные о волокне
Пример 2.1
(ср.)
2.2 2.3 2.4 2.5 2.6 2.7
Целлюлоза/ПАН Соотношение 100/0 90/10 80/20 70/30 65/35 60/40 50/50 Мас.% 100/0 87,4/ 75,4/ 64,1/ 58,7/ 53,5/ 43,4/ Об.% 14,6 24,6 35,9 41,3 46,5 56,6 Условия прядения: Массовый поток (г/мин и сопло) 1,25 1,11 0,98 0,89 0,82 0,78 0,73 Температура прядения Θпр (°C) 93,5 90,0 103,5 104,7 103,3 103,9 114,2 Воздушный зазор а (мм) 80 80 90 90 90 125 90 Количество воздуха (л/мин) 60 35 35 20 25 20 5 Влажность воздуха (г/м3) 2,7 2,2 3,0 5,0 4,3 2,6 3 Свойства волокна: Тонина (линейная плотность)(дтекс) 1,73 1,66 1,68 1,69 1,67 1,73 1,72 Прочность на разрыв, конд. (сН/текс) 50,3 44,6 35,1 30,4 27,3 23,9 19,4 Прочность на разрыв, мокр. (сН/текс) 43,7 37,5 34,2 28,0 27,7 26,7 19,5 Удлинение, конд. (%) 11,7 10,6 9,2 15,5 10,7 10,3 12,9 Удлинение, мокр. (%) 12,8 12,2 12,9 18,2 19,3 16,9 28,9 Разрывное усилие петли
(сН/текс)
22,2 19,5 18,6 16,6 15,5 11,0 13,1
Мокрое истирание1 (обороты) 28 36 59 114 221 618 4466 Возможность удерживания воды (%) 65,9 64,4 61,3 57,3 53,2 45,3 37,5 Сродство к красителю2 (мг/г) 50 54 54 54 52 1 Метод определения устойчивости к мокрому истиранию описан в публикации K.-P. Mieck, H. Langner; A. Nechwatal; Lenzinger Berichte 74 (1994) 61-68.
2 Сродство к красителю определяли в 6%-ном растворе красителя Direct Red 81 (условия реакции: 3 часа при 80°С, 14,2 г/л сульфата натрия). Волокно целлюлоза-ПАН проявляет по сравнению с чистым целлюлозным волокном незначительно повышенное сродство к красителю, в то время как используемое волокно ПАН Dolanit 10 не обладает никаким сродством к этому красителю (сродство к красителю: 0 мг/г).

Двойная логарифмическая связь между NSB (СМИ) и WRV (ВУВ), найденная для лиоцельных волокон из растворов целлюлозы/второго компонента в NММО, подтвердилась с помощью этого примера для лиоцельных волокон из целлюлозы/ПАН в ионных жидкостях исключительным образом (сравнительная фиг.2).

Изображение зависимости прочности на разрыв сухого и мокрого (способа) от состава в объемных % при привлечении данных волокна для смеси 24,7 об.% целлюлозы/75,5 об.% ПАН (пример 4, в таблице 4 не содержится) на фиг.3 показывает очень отчетливо инверсию фаз при объемном соотношении 50 к 50.

Пример 3

Массовое соотношение целлюлоза/ПАН (60:40)

Хлопковый линт целлюлозы (показатель «Куоксам-DP»: 454) и волокно из ПАН (Dolanit 10) в модуле ванны 1:20 в воде размельчали посредством устройства Ultra-Turrax до отдельных волокон и отжимали до доли твердого вещества 35 мас.%. 174 г отжатой смеси волокон вносили в 341,6 г 1-этил-3-метилимидазолхлорида (EMIMCl), содержащего 30 мас.% воды и 0,2 г пропилового эфира галловой кислоты, диспергировали, чтобы получить гомогенную суспензию, в которой с помощью 0,1 молярного водного раствора гидроксида натрия устанавливали pH>8. После помещения суспензии в вертикальный смеситель при сильном сдвиге, медленно повышающейся температуре от 90 до 125°С и пониженном давлении от 850 до 5 мбар при отгонке воды получали гомогенный полимерный раствор. Время растворения составляло 90 мин.

Аналитические характеристики полимерного раствора представлены следующими данными:

Содержание твердого вещества: 20,3%

Вязкость при нулевом сдвиге: (85°С): 28167 Па·с

Из полимерных растворов посредством сухого/мокрого процесса прядения пряли волокна. Условия прядения и размер волокна приведены в следующей таблице 5.

Таблица 5
Условия прядения и данные о волокне
Пример 3 Условия прядения: Массовый поток (г/мин и сопло) 0,73 Температура прядения Θпр (°C) 109,4 Воздушный зазор а (мм) 110 Количество воздуха (л/мин) нет Влажность воздуха (г/м3) 9,6 Свойства волокна: Тонина (дтекс) 1,84 Прочность на разрыв, конд. (сН/текс) 25,4 Прочность на разрыв, мокр. (сН/текс) 21,8 Удлинение, конд. (%) 34,3 Удлинение, мокр. (%) 39,3 Разрывное усилие петли (сН/текс) 21,7 Мокрое истирание1 (обороты) 250 Волокно-DP 422

Пример 4

Массовое соотношение целлюлоза/ПАН (30:70)

12,0 г эвкалиптовой клетчатки (содержание сухого вещества: 95%, показатель «куоксам-DP»: 892) и 26,8 г волокна ПАН (Dolanit 10, содержание сухого вещества 99,25%) вместе в модуле ванны 1:20 в воде размельчали посредством Ultra-Turrax до отдельных волокон и отжимали до доли твердого вещества 25%. Отжатую смесь волокон вносили в 265 г 1-бутил-3-метилимидазолхлорида (BMIMCl), содержащего 20 мас.% воды и 0,1 г пропилового эфира галловой кислоты, и диспергировали, чтобы получить гомогенную суспензию, в которой с помощью нелетучего основания устанавливали pH>8. После помещения суспензии в вертикальный смеситель при сильном сдвиге, медленно повышающейся температуре от 90 до 135°С и пониженном давлении от 850 до 3 мбар при отгонке воды получали гомогенный полимерный раствор. Время растворения составляло 90 мин.

Аналитические характеристики полимерного раствора представлены следующими данными:

Содержание твердого вещества: 15,2%

Вязкость при нулевом сдвиге: (95°С): 927 Па·с

Из полимерных растворов посредством сухого/мокрого процесса прядения пряли волокна. Условия прядения и данные о волокне приведены в следующей таблице 6.

Таблица 6
Условия прядения и данные о волокне
Пример 4 Условия прядения: Массовый поток (г/мин и сопло) 0,91 Температура прядения Θпр (°C) 98,8 Воздушный зазор а (мм) 90 Количество воздуха (л/мин) 17 Влажность воздуха (г/м3) 7,8 Свойства волокна: Тонина (дтекс) 1,82 Прочность на разрыв, конд. (сН/текс) 12,2 Прочность на разрыв, мокр. (сН/текс) 12,7 Удлинение, конд. (%) 13 Удлинение, мокр. (%) 32 Разрывное усилие петли (сН/текс) 9,2 Мокрое истирание (обороты) >100001 Возможность удерживания воды (%) 17,6 1 При методе определения мокрого истирания измерения после 10000 оборотов прекращают, так что большие значения не могут быть определены.

Похожие патенты RU2431004C2

название год авторы номер документа
СПОСОБ ПРОИЗВОДСТВА ЛИГНИНСОДЕРЖАЩЕГО ПРЕДШЕСТВЕННИКА ВОЛОКОН, А ТАКЖЕ УГЛЕРОДНЫХ ВОЛОКОН 2012
  • Леманн Андре
  • Эбелинг Хорст
  • Финк Ханс-Петер
RU2625306C2
СПОСОБ ПОЛУЧЕНИЯ ПРЯДИЛЬНЫХ СМЕСЕВЫХ РАСТВОРОВ ЦЕЛЛЮЛОЗЫ И СОПОЛИМЕРА ПАН В N-МЕТИЛМОРФОЛИН-N-ОКСИДЕ (ВАРИАНТЫ) 2019
  • Макаров Игорь Сергеевич
  • Голова Людмила Константиновна
  • Кузнецова Людмила Кузминична
  • Виноградов Маркел Игоревич
  • Куличихин Валерий Григорьевич
RU2707600C1
СПОСОБ ПРОИЗВОДСТВА ЦЕЛЛЮЛОЗНЫХ ФОРМОВАННЫХ ИЗДЕЛИЙ 2003
  • Редлингер Сигрид
  • Рейтер Герхард
  • Фирго Хейнрих
RU2318084C2
НЕТКАНАЯ ВОДОРАСТВОРИМАЯ КОМПОЗИТНАЯ СТРУКТУРА 2020
  • Брайдвелл, Виктория
  • Соаве, Карло
  • Найт, Джонатон
RU2821000C1
ВОДОРАСТВОРИМЫЕ НЕТКАНЫЕ ПОЛОТНА ДЛЯ УПАКОВКИ АГРЕССИВНЫХ ХИМИЧЕСКИХ ВЕЩЕСТВ 2020
  • Брайдвелл, Виктория
  • Найт, Джонатон
RU2824131C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ФОРМОВАНИЯ ЭЛЕМЕНТАРНОЙ НИТИ С ИЗМЕНЕНИЕМ НАПРАВЛЕНИЯ 2019
  • Цикели, Штефан
  • Эккер, Фридрих
RU2808962C2
МНОГОКОМПОНЕНТНЫЕ ВОЛОКНА 2007
  • Нильстранд Анна
  • Габриэли Инге
  • Хагстрем Бенгт
RU2444583C2
ПРИМЕНЕНИЕ ЛИОЦЕЛЬНОГО ВОЛОКНА 2016
  • Опиетник Мартина
  • Гольдхальм Гизела
  • Фирго Хайнрих
RU2720084C2
ЦЕЛЛЮЛОЗНОЕ ШТАПЕЛЬНОЕ ВОЛОКНО, ЕГО ПРИМЕНЕНИЕ И НАПОЛНИТЕЛЬ 2005
  • Кронер Герт
  • Фирго Хейнрих
  • Мэннер Иоганн
  • Сулек Петер
RU2388855C2
ЛИОЦЕЛЬНОЕ ВОЛОКНО, СПОСОБ ЕГО ПРОИЗВОДСТВА, БУМАГА И ГИДРОПЕРЕПЛЕТЕННЫЙ МАТЕРИАЛ 1995
  • Джеймс Мартин Гэннон
  • Ян Гравесон
  • Памела Энн Джонсон
  • Кэлвин Роджер Вудингс
RU2144101C1

Иллюстрации к изобретению RU 2 431 004 C2

Реферат патента 2011 года СПОСОБ ПОЛУЧЕНИЯ ЦЕЛЛЮЛОЗНЫХ МНОГОКОМПОНЕНТНЫХ ВОЛОКОН

Изобретение относится к технологии производства целлюлозных многокомпонентных волокон. Сначала получают микроскопически гомогенный раствор диспергированием 75-25 об.% целлюлозы и 25-75 об.%, по меньшей мере, одного другого волокнообразующего полимера в водосодержащей ионной жидкости при добавлении стабилизаторов и удалением полностью воды при помощи сдвига, температуры и вакуума. Раствор формуют через, по меньшей мере, одну фильеру в волокно/пучок волокон, направляют его через кондиционированный зазор при вытягивании для осаждения ориентированных струй раствора обработкой термостатированным раствором осадителя для целлюлозы и другого волокнообразующего полимера, смешанным с ионной жидкостью так, чтобы произошло спинодальное расслоение. Ориентированные струи раствора удаляют из осадительной ванны и подвергают последующей обработке. Полученное волокно обладает пониженной набухаемостью и повышенной стойкостью к мокрому истиранию. 2 н. и 8 з.п. ф-лы, 6 табл., 3 ил.

Формула изобретения RU 2 431 004 C2

1. Способ получения целлюлозных многокомпонентных волокон с уменьшенной набухаемостью из ионных жидкостей, отличающийся тем, что 75-25 об.% целлюлозы и 25-75 об.%, по меньшей мере, одного другого волокнообразующего полимерного компонента диспергируют в водосодержащей ионной жидкости при добавлении стабилизаторов, удаляют полностью воду при помощи сдвига, подвода тепла и вакуума, полученный микроскопически гомогенный раствор формуют через, по меньшей мере, одну фильеру в волокно/пучок волокон, направляют его через кондиционированный зазор при вытягивании, осаждают ориентированные струи раствора путем обработки термостатированным раствором, который смешивают с ионной жидкостью и который представляет собой осадитель для целлюлозы и другого волокнообразующего полимерного компонента, так чтобы произошло спинодальное расслоение, удаляют ориентированные струи раствора из осадительной ванны и затем подвергают последующей обработке.

2. Способ получения целлюлозных многокомпонентных волокон по п.1, отличающийся тем, что в качестве целлюлозного компонента используют клетчатку с показателем «куоксам-DP» в области 300-2000, полученную из древесины, хлопкового линта или других однолетних растений по сульфитному, сульфатному/предгидролизному сульфатному способу.

3. Способ получения целлюлозных многокомпонентных волокон по п.1, отличающийся тем, что в качестве другого волокнообразующего компонента используют полиакрилонитрил.

4. Способ получения целлюлозных многокомпонентных волокон по п.1, отличающийся тем, что в качестве другого волокнообразующего компонента используют сополимеры полиакрилонитрила.

5. Способ получения целлюлозных многокомпонентных волокон по п.1, отличающийся тем, что соотношение вязкостей при нулевом сдвиге растворов целлюлозы и второго полимера в ионной жидкости имеет значение исключительно выше 1.

6. Способ получения целлюлозных многокомпонентных волокон по п.1, отличающийся тем, что в качестве ионных жидкостей используют 1-бутил-3-метилимидазолхлорид (BMIMCl), и/или 1-этил-3-метилимидазолхлорид (EMIMCl), и/или 1-бутил-3-метилимидазолацетат (BMIMAc), и/или 1-этил-3-метилимидазолацетат (EMIMAc).

7. Способ получения целлюлозных многокомпонентных волокон по п.1, отличающийся тем, что в качестве стабилизаторов используют нелетучие основания в отдельности или в комбинации с пропилгаллатом, таннином, п-фенилендиамином или хиноном.

8. Способ получения целлюлозных многокомпонентных волокон по п.1, отличающийся тем, что в качестве нелетучих оснований используют гидроксиды щелочных металлов или полиэтиленимин.

9. Способ получения целлюлозных многокомпонентных волокон по п.1, отличающийся тем, что в качестве осадителей используют воду и/или смешиваемые с водой спирты, которые могут содержать вплоть до 50% ионной жидкости, используемой в качестве растворителя.

10. Целлюлозное многокомпонентное волокно с уменьшенной набухаемостью, полученное способом по одному из пп.1-9.

Документы, цитированные в отчете о поиске Патент 2011 года RU2431004C2

DE 102004031025 В3, 29.12.2005
YOSHIYUKI NISHIO et all
«Blends of cellulose with polyacrilonitrile prepared from N,N-dimethylacetamide-lithium chloride solutions», J
Polymer, 1987, vol.28, July, p.1385-1390
WO 2005098546 A2, 20.10.2005
Способ получения раствора для формования волокон и пленок 1981
  • Савицкая Татьяна Александровна
  • Капуцкий Федор Николаевич
  • Гриншпан Дмитрий Давидович
  • Бурд Евгений Залманович
  • Чеголя Александр Сергеевич
  • Кваша Владимир Борисович
  • Журавская Татьяна Дмитриевна
SU1002419A1

RU 2 431 004 C2

Авторы

Козан Биргит

Михельс Кристоф

Майстер Франк

Бауэр Ральф-Уве

Даты

2011-10-10Публикация

2007-04-26Подача