Изобретение относится к металлургической промышленности, а именно к химико-термической обработке поверхности изделий из технически чистого титана ВТ1-0, и может быть использовано для повышения эксплуатационных характеристик медицинского инструмента.
Известен способ ионного азотирования в плазме дугового разряда титановых сплавов при температуре 500-600°С в смеси газов азот-аргон [1]. С помощью данного метода можно эффективно проводить процесс азотирования титановых сплавов ВТ6 и ВТ20. Указанный способ азотирования не позволяет проводить процесс для титана в наноструктурном (НС) и/или субмикрокристаллическом (СМК) состояниях, так как при указанных температурах процесса в титановых сплавах в НС и СМК состоянии начнется процесс рекристаллизации. Еще одним недостатком ионного азотирования в плазме дугового разряда является тот факт, что при проведении процесса в данном типе разряда возможно попадание продуктов эрозии катода на поверхность обрабатываемых изделий.
Наиболее близким по своим признакам, принятым за прототип, является способ низкотемпературного азотирования титана и его сплавов в плазме несамостоятельного дугового разряда низкого давления [2]. Процесс азотирования титановых сплавов ВТ1-0 в состоянии поставки, ВТ6 в состоянии поставки, ВТ6 СМК, ВТ16 в состоянии поставки, ВТ16 СМК, ВТ16 закаленный проводился в следующем режиме: вакуумная камера откачивалась до давления р=2·10-2 Па, затем через катодную полость подавался рабочий газ (Ar, N2). После этого подавалось напряжение ~70 В на разрядный промежуток. В результате чего происходило зажигание диффузионной дуги низкого давления с накаленным катодом. В качестве плазмообразующей смеси использовались смеси газов аргон-азот в процентном соотношении (5:95, 12,5:87,5, 25:75). Азотирование выполняли при температуре ~420°С в течение 1 часа. Но этот способ не может быть применен для азотирования технически чистого титана ВТ1-0 в различных структурных состояниях в силу того, что процесс проводится при температуре 420°С. Азотирования технически чистого титана в наноструктурном (НС) или субмикрокристаллическом (СМК) состояниях при такой температуре приведет к формированию тонких модифицированных слоев, которые не обеспечат достаточный уровень технологических характеристик, таких как твердость, износостойкость и коррозионная стойкость. Указанные режимы азотирования титана и титановых сплавов проводятся в течение 1 часа, увеличение длительности процесса может также привести к началу рекристаллизации ВТ1-0 в СМК и НС состояниях.
Задачей предлагаемого изобретения является повышение эксплуатационных характеристик материалов и/или изделий из технически чистого титана в крупнозернистом, НС и/или СМК состоянии.
Поставленная задача решается тем, что в способе низкотемпературного азотирования в плазме несамостоятельного дугового разряда низкого давления технически чистого титана ВТ1-0 азотирование проводят с использованием в качестве плазмообразующей смеси газов азот-аргона. При этом азотирование выполняют при температуре 400°С и используют ионную и электронную компоненту плазмы.
Время азотирования и количество аргона в плазмообразующей смеси устанавливают в зависимости от требуемой толщины модифицированного слоя.
Предлагаемый способ низкотемпературного азотирования в плазме несамостоятельного дугового разряда низкого давления технически чистого титана ВТ1-0 позволяет улучшить качество и свойства поверхности изделий из него, при этом сохранить структуру в объеме материала, предварительно сформированную с помощью методов интенсивной пластической деформации. Так же стоит отметить, что предлагаемый способ позволяет варьировать время азотирования в зависимости от требуемой толщины модифицированных слоев. Такой результат был получен за счет проведения процесса при температуре 400°С в газовой среде азот-аргон с процентным содержанием аргона от 5 до 95% и использовании элионного режима.
Проведение процесса азотирования по прототипу при температуре 420°С в плазмообразующей среде газовой смеси азот-аргон с содержанием аргона от 5 до 25% приведет к рекристаллизации материала в НС или СМК состоянии и снижению скорости диффузии азота в материал. Температура 400°С является наиболее приемлемой, так как, с одной стороны, не происходит рекристаллизация, а с другой стороны, скорость диффузии азота будет выше, чем при азотировании в газовой смеси азот-аргон с процентным содержанием аргона от 5 до 25%. Соответственно, характеристики модифицированных слоев будет лучше, при этом предварительно сформированная структура в объеме материала НС или СМК состояния сохранятся.
На фиг.1 изображена схема экспериментов по низкотемпературному азотированию в плазме несамостоятельного дугового разряда низкого давления: 1 - плазмогенераторы ПИНК; 2 - вакуумная камера; 3 - технологичесткая оснастка; 4 - образцы; В/Н - источник отрицательного напряжения смещения; ИП-1 и ИП-2 - источники питания плазмогенераторов; ИП-Э - источник питания электронного режима. На фиг.2 изображена морфология поверхности ВТ6 в крупнозернистом состоянии после азотирования.
Азотирование выполняли на ионно-плазменной установке типа ННВ-6.6-И1 (фиг.1). На дверце и верхней стенке вакуумной камеры 2, размерами 600×600×600 мм, располагаются газоразрядные плазмогенераторы ПИНК 1 на основе несамостоятельного дугового разряда низкого давления. Откачка вакуумного объема осуществлялась диффузионным паромасляным насосом Н-250. Вакуумная камера откачивалась до предельного остаточного давления 3÷5×10-5 Торр (0.4÷0.65×10-3 Па). Азотирование осуществлялось в элионном режиме работы установки. Принцип работы схемы элионного азотирования заключается в следующем: в зависимости от режима работы нагрев и поддержание температуры образцов осуществляется электронной и ионной компонентой плазмы. В ионно режиме (фиг.1) - стенки вакуумной камеры 2 являются анодом, а на расположенный в центре камеры манипулятор с оснасткой 3 подается от отдельного источника питания (В/Н) отрицательное напряжение смещения, осуществляя, таким образом, очистку, нагрев и проведения процесса азотирования образцов 4 за счет ионной компоненты плазмы. В электронном режиме анодом является манипулятор с оснасткой 3, в этом случае нагрев осуществляется электронной компонентой плазмы, питание разряда происходит от отдельного источника (ИП-Э).
Пример 1. В качестве материала исследования был выбран технически чистый титан ВТ1-0 в СМК состоянии, с размером зерна ~150 нм. Процесс проводили при температуре 400°С в смеси газов азот-аргон с процентным соотношением 60% N2 - 40% Ar. Время азотирования составляло 40 минут. После азотирования поверхностная микротвердость повысилась на 5,5%, при этом на поверхности сформировался слой с мелкодисперсными частицами нитрида титана глобулярной формы размерами от 20 до 100 нм, что также способствует повышению микротвердости поверхности (фиг.2). Дальнейшее увеличение времени азотирования до 120 минут приводит к увеличению глубины модифицированного слоя, что позволяет улучшить триботехнические характеристики и одновременно повысить поверхностную микротвердость на 60%.
Пример 2. В качестве материала исследования был выбран технически чистый титан ВТ1-0 в крупнозернистом состоянии, с размером зерна 5÷7 мкм. Азотирование проводилось по методике, указанной в примере 1. В результате обработки в течение 40 минут микротвердость поверхности увеличилась на 46%.
Таким образом, предлагаемый способ низкотемпературного азотирования в плазме несамостоятельного дугового разряда низкого давления позволяет проводить процесс для технически чистого титана ВТ1-0 как в крупнозернистом состоянии, так и в НС и/или СМК состояниях.
Список литературы
1. А.А.Ильин, С.В.Скворцова, Е.А.Лукина, В.Н.Карпов, О.А.Поляков. Низкотемпературное ионное азотирование имплантатов их титанового сплава ВТ20 в различных структурных состояниях // Металлы, №2, 2005, с.38-44.
2. Д.С.Вершинин, Т.Н.Вершинина, Ю.Р.Колобов, М.Ю.Смолякова, О.А.Дручинина. Низкотемпературное азотирование титана и его сплавов в плазме несамостоятельного дугового разряда низкого давления // Сб. трудов 8-й Международной конференции «Взаимодействие излучений с твердым телом», Минск, Беларусь, 23-25 сентября, 2009, стр.160-162.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ НИЗКОТЕМПЕРАТУРНОГО АЗОТИРОВАНИЯ В ПЛАЗМЕ НЕСАМОСТОЯТЕЛЬНОГО ДУГОВОГО РАЗРЯДА НИЗКОГО ДАВЛЕНИЯ ТИТАНОВЫХ СПЛАВОВ ВТ6 И ВТ16 | 2010 |
|
RU2434074C1 |
СПОСОБ ИНТЕНСИФИКАЦИИ ПРОЦЕССА НИЗКОТЕМПЕРАТУРНОГО ИОННОГО АЗОТИРОВАНИЯ ИЗДЕЛИЙ ИЗ ТИТАНОВЫХ СПЛАВОВ | 2019 |
|
RU2717124C1 |
СПОСОБ НИЗКОТЕМПЕРАТУРНОГО ИОННОГО АЗОТИРОВАНИЯ ТИТАНОВЫХ СПЛАВОВ | 2017 |
|
RU2633867C1 |
СПОСОБ НИЗКОТЕМПЕРАТУРНОГО ИОННОГО АЗОТИРОВАНИЯ ТИТАНОВЫХ СПЛАВОВ С ПОСТОЯННОЙ ПРОКАЧКОЙ ГАЗОВОЙ СМЕСИ | 2018 |
|
RU2687616C1 |
СПОСОБ АЗОТИРОВАНИЯ ТИТАНОВЫХ СПЛАВОВ В ТЛЕЮЩЕМ РАЗРЯДЕ | 2015 |
|
RU2625518C2 |
Способ ионно-плазменного азотирования изделий из титана или титанового сплава | 2018 |
|
RU2686975C1 |
СПОСОБ ИОННОГО АЗОТИРОВАНИЯ ТИТАНОВЫХ СПЛАВОВ | 2015 |
|
RU2611003C1 |
СПОСОБ НАНЕСЕНИЯ АНТИФРИКЦИОННОГО ИЗНОСОСТОЙКОГО ПОКРЫТИЯ НА ТИТАНОВЫЕ СПЛАВЫ | 2012 |
|
RU2502828C1 |
СПОСОБ ИОННО-ПЛАЗМЕННОГО ПРЕЦИЗИОННОГО АЗОТИРОВАНИЯ ПОВЕРХНОСТЕЙ МЕТАЛЛИЧЕСКИХ ИЗДЕЛИЙ | 2013 |
|
RU2555692C2 |
СПОСОБ ПЛАЗМЕННОГО АЗОТИРОВАНИЯ ИЗДЕЛИЯ ИЗ СТАЛИ ИЛИ ИЗ ЦВЕТНОГО СПЛАВА | 2009 |
|
RU2413033C2 |
Изобретение относится к металлургической промышленности, а именно к химико-термической обработке поверхности изделий из технически чистого титана ВТ1-0, и может быть использовано для повышения эксплуатационных характеристик медицинского инструмента. Заявлен способ низкотемпературного азотирования в плазме несамостоятельного дугового разряда низкого давления технически чистого титана ВТ 1-0, включающий азотирование с использованием в качестве плазмообразующей смеси газов азот-аргон. Азотирование выполняют при температуре 400°С и используют ионную и электронную компоненту плазмы. Время азотирования и количество аргона в плазмообразующей смеси устанавливают в зависимости от требуемой толщины модифицированного слоя. Технический результат - повышение эксплуатационных характеристик материалов и/или изделий из технически чистого титана в крупнозернистом, НС и/или СМК состоянии. Улучшается качество и свойства поверхности и при этом сохраняется структура материала в объеме, предварительно сформированная с помощью методов интенсивной пластической деформации. 1 з.п. ф-лы, 2 ил.
1. Способ низкотемпературного азотирования в плазме несамостоятельного дугового разряда низкого давления технически чистого титана ВТ1-0, включающий азотирование с использованием в качестве плазмообразующей смеси газов азот-аргон, отличающийся тем, что азотирование выполняют при температуре 400°С и используют ионную и электронную компоненту плазмы.
2. Способ по п.1, отличающийся тем, что время азотирования и количество аргона в плазмообразующей смеси устанавливают в зависимости от требуемой толщины модифицированного слоя.
ВЕРШИНИН Д.С | |||
и др | |||
Низкотемпературное азотирование титана и его сплавов в плазме несамостоятельного дугового низкого давления, 8-я Международная конференция «Взаимодействие излучений с твердым телом», 23-25.09.2009, Минск | |||
Способ азотирования деталей из титана и его сплавов | 1989 |
|
SU1728304A1 |
KR 20000043023 А, 15.07.2000 | |||
СПОСОБ ФИКСАЦИИ И МОДЕЛИРОВАНИЯ СЕТЧАТОГО ПРОТЕЗА ПРИ ПАХОВОЙ ГЕРНИОПЛАСТИКЕ | 2005 |
|
RU2328221C2 |
БАБАД-ЗАХРЯПИН А.А | |||
и др | |||
Химико-термическая обработка в тлеющем разряде | |||
- М.: Атомиздат, 1975, с.62-74. |
Авторы
Даты
2011-11-20—Публикация
2010-03-23—Подача