СПОСОБ АЗОТИРОВАНИЯ ТИТАНОВЫХ СПЛАВОВ В ТЛЕЮЩЕМ РАЗРЯДЕ Российский патент 2017 года по МПК C23C8/36 

Описание патента на изобретение RU2625518C2

Изобретение относится к машиностроительной промышленности, а именно к химико-термической обработке поверхности изделий из титанового сплава и может быть использовано для повышения эксплуатационных характеристик изделий.

Известен способ низкотемпературного азотирования в плазме несамостоятельного дугового разряда низкого давления технически чистого титана BT-0 (RU №2434075 C1, МПК C23C 8/24, 2011 г.). В данном способе азотирование реализовано в плазме несамостоятельного дугового разряда низкого давления за счет использования в качестве плазмообразующей смеси газов азот-аргон. При этом азотирование выполняется при температуре 400°C и используют ионную и электронную компоненту плазмы. Время азотирования и количество аргона в плазмообразующей смеси устанавливается в зависимости от требуемой толщины модифицированного слоя.

Недостатком аналога является невысокая производительность и малая глубина азотированного слоя, необходимость использования сложного оборудования и специальных источников ионов, а также потребность в высоком вакууме (10-2 Па).

Известен способ азотирования в плазме тлеющего разряда (RU №2409700 C1, МПК C23C 8/36, 2011), включающий азотирование в тлеющем разряде и закалку, для осуществления которого проводят вакуумный нагрев изделий в плазме азота повышенной плотности. Плазму азота повышенной плотности формируют в кольцевой области вращения электронов, захваченных магнитным полем, силовые линии которого параллельны обрабатываемой поверхности, при этом электронное облако максимально локализовано у детали-катода.

Недостатком аналога является отсутствие возможности азотирования титановых сплавов.

Наиболее близким по технической сущности является способ низкотемпературного азотирования в плазме несамостоятельного дугового разряда низкого давления титановых сплавов ВТ-6 и ВТ-16 (RU №2434074 С1, МПК С23С 8/24, 2011 г.). Данный способ реализуется за счет пластической деформации, которую проводят до азотирования для формирования наноструктурированного или субмикрокристаллического состояния в объеме материала. Азотирование проводят на ионно-плазменной установке типа ННВ-6.6-И1. Процесс проводят при температуре 400°С в смеси газов азот-аргон с процентным соотношением 60% N2 - 40% Ar, давление в камере 10-2 Па, напряжение 70 В. Время азотирования 40 минут. После азотирования поверхностная микротвердость повысилась на 5,5%, при этом на поверхности сформировался слой с мелкодисперсными частицам нитрида титана глобулярной формы. Дальнейшее увеличение времени азотирования до 120 минут приводит к увеличению глубины модифицированного слоя до 10 мкм.

Недостатком прототипа является невысокая производительность и малая глубина азотированного слоя, необходимость использования сложного оборудования и специальных источников ионов, а также потребность в высоком вакууме (10-2 Па).

Задачей предлагаемого изобретения является повышение производительности процесса и улучшение эксплуатационных свойств поверхности детали из титановых сплавов.

Техническим результатом способа является интенсификации процесса насыщения поверхности ионами азота при ионном азотировании титановых сплавов и получение развитой диффузионной зоны на титановой основе порядка 50-70 мкм.

Поставленная задача решается, а технический результат достигается тем, что в способе азотирования изделий из титановых сплавов в тлеющем разряде, включающий проведение указанного азотирования в газовой смеси азот-аргон, согласно изобретению, используют упомянутую газовую смесь азот-аргон процентным соотношением 60% N2 - 40% Ar, при этом упомянутое азотирование в тлеющем разряде проводят в магнитном поле при температуре 650-750°C в течение 4 часов, напряжении в разрядном промежутке 450-550 В и давлении в вакуумной камере 10-1-1 Па.

Наличие магнитного поля при определенных соотношениях между напряжением разряда и давлением плазмообразующего газа приводит к значительному увеличению разрядного тока при некотором снижении напряжения. Увеличение тока разряда обусловлено тем, что в катодной области увеличивается генерация заряженных частиц осциллирующими электронами, захваченными магнитным полем; при этом возрастает число ионов, бомбардирующих поверхность, и число электронов, эмитируемых катодом. Также наложение магнитного поля заметно ускоряет формирование азотированного слоя, а низкое давление способствует более глубокому проникновению диффузии азота вглубь металла.

Существо изобретения поясняется чертежом, на котором изображена схема проведения ионного азотирования на установке ЭЛУ-5.

Установка состоит из вакуумной камеры 1, магнитной системы 2, системы ввода рабочего газа 3, системы откачки 4 и рабочего стола 5 с образцом 6.

Процесс азотирования осуществляется при температуре 650-750°С, которая существенно превышает точку температуры Кюри. Поэтому предусмотрена система охлаждения магнитной системы, обеспечивающая захват и удержание электронов над образцом.

Пример конкретной реализации способа

В качестве материала для проведения испытаний был выбран титановый сплав ВТ-6. Способ реализовали на модернизированной установке ЭЛУ-5. В вакуумной камере на рабочем столе устанавливается предварительно очищенный образец, который подключают к отрицательному электроду. Затем создается рабочее давление в диапазоне от 10-1 до 1 Па, после чего вакуумная камера прокачивается смесью газов азот-аргон (60% N2 - 40% Ar), подается рабочее напряжение 500-600 В. Образец, установленный в вакуумной камере, нагревают до температуры 650-750°C и азотируют в течение 4 часов. Все процессы проходят за один вакуумный цикл, т.е. в одной камере и в одной и той же газовой среде (60% N2 - 40% Ar), что позволяет максимально снизить вспомогательное время, затрачиваемое на подготовительные операции, которые связаны с использованием разного оборудования и оснастки. При этом глубина азотированного слоя достигает 60-70 мкм.

Необходимо отметить следующие преимущества заявленного способа: большая глубина азотированного слоя, высокая производительность процесса, простота установки, не требующая проектирования специальных приспособлений.

Таким образом, предлагаемый способ ионного азотирования титановых сплавов при низком давлении позволяет получить глубину диффузионного слоя в титановом сплаве порядка 50-70 мкм.

Похожие патенты RU2625518C2

название год авторы номер документа
СПОСОБ ИОННОГО АЗОТИРОВАНИЯ ТИТАНОВЫХ СПЛАВОВ 2015
  • Рамазанов Камиль Нуруллаевич
  • Заббарова Лиана Наилевна
  • Хуснутдинов Расим Фаритович
  • Золотов Илья Владимирович
RU2611003C1
СПОСОБ НИЗКОТЕМПЕРАТУРНОГО ИОННОГО АЗОТИРОВАНИЯ ТИТАНОВЫХ СПЛАВОВ С ПОСТОЯННОЙ ПРОКАЧКОЙ ГАЗОВОЙ СМЕСИ 2018
  • Рамазанов Камиль Нуруллаевич
  • Агзамов Рашид Денисламович
  • Хусаинов Юлдаш Гамирович
  • Николаев Алексей Александрович
  • Тагиров Айнур Фирганович
  • Есипов Роман Сергеевич
  • Варданян Эдуард Леонидович
RU2687616C1
СПОСОБ ИНТЕНСИФИКАЦИИ ПРОЦЕССА НИЗКОТЕМПЕРАТУРНОГО ИОННОГО АЗОТИРОВАНИЯ ИЗДЕЛИЙ ИЗ ТИТАНОВЫХ СПЛАВОВ 2019
  • Рамазанов Камиль Нуруллаевич
  • Хусаинов Юлдаш Гамирович
  • Агзамов Рашид Денисламович
  • Николаев Алексей Александрович
  • Тагиров Айнур Фиргатович
RU2717124C1
СПОСОБ НИЗКОТЕМПЕРАТУРНОГО ИОННОГО АЗОТИРОВАНИЯ ТИТАНОВЫХ СПЛАВОВ 2017
  • Будилов Владимир Васильевич
  • Рамазанов Камиль Нуруллаевич
  • Агзамов Рашид Денисламович
  • Тагиров Айнур Фиргатович
  • Золотов Илья Владимирович
RU2633867C1
СПОСОБ АЗОТИРОВАНИЯ В ПЛАЗМЕ ПОВЫШЕННОЙ ПЛОТНОСТИ 2015
  • Рамазанов Камиль Нуруллаевич
  • Будилов Владимир Васильевич
  • Хуснутдинов Расим Фаритович
  • Заббарова Лиана Наилевна
  • Золотов Илья Владимирович
RU2611251C2
СПОСОБ НИЗКОТЕМПЕРАТУРНОГО АЗОТИРОВАНИЯ В ПЛАЗМЕ НЕСАМОСТОЯТЕЛЬНОГО ДУГОВОГО РАЗРЯДА НИЗКОГО ДАВЛЕНИЯ ТИТАНОВЫХ СПЛАВОВ ВТ6 И ВТ16 2010
  • Вершинин Данил Сергеевич
  • Смолякова Марина Юрьевна
RU2434074C1
СПОСОБ НИЗКОТЕМПЕРАТУРНОГО АЗОТИРОВАНИЯ В ПЛАЗМЕ НЕСАМОСТОЯТЕЛЬНОГО ДУГОВОГО РАЗРЯДА НИЗКОГО ДАВЛЕНИЯ ТЕХНИЧЕСКИ ЧИСТОГО ТИТАНА ВТ1-0 2010
  • Вершинин Данил Сергеевич
  • Смолякова Марина Юрьевна
RU2434075C1
Способ ионно-плазменного азотирования изделий из титана или титанового сплава 2018
  • Денисов Владимир Викторович
  • Коваль Николай Николаевич
  • Щанин Петр Максимович
  • Островерхов Евгений Владимирович
  • Денисова Юлия Александровна
  • Иванов Юрий Федорович
  • Ахмадеев Юрий Халяфович
  • Лопатин Илья Викторович
RU2686975C1
СПОСОБ ВЫСОКОТЕМПЕРАТУРНОГО АЗОТИРОВАНИЯ ИЗДЕЛИЙ ИЗ ТИТАНОВЫХ СПЛАВОВ 2015
  • Рамазанов Камиль Нуруллаевич
  • Будилов Владимир Васильевич
  • Хуснутдинов Расим Фаритович
  • Заббарова Лиана Наилевна
  • Золотов Илья Владимирович
RU2611607C2
СПОСОБ МОДИФИКАЦИИ ПОВЕРХНОСТИ ИЗДЕЛИЙ ИЗ ТИТАНОВЫХ СПЛАВОВ В ВАКУУМЕ 2014
  • Рамазанов Камиль Нуруллаевич
  • Будилов Владимир Васильевич
  • Рамазанов Игорь Степанович
  • Агзамов Рашид Денисламович
  • Хусаинов Юлдаш Гамирович
  • Золотов Илья Владимирович
RU2562185C1

Иллюстрации к изобретению RU 2 625 518 C2

Реферат патента 2017 года СПОСОБ АЗОТИРОВАНИЯ ТИТАНОВЫХ СПЛАВОВ В ТЛЕЮЩЕМ РАЗРЯДЕ

Изобретение относится к машиностроительной промышленности, а именно к химико-термической обработке поверхности изделий из титанового сплава и может быть использовано для повышения эксплуатационных характеристик изделий. Способ азотирования изделий из титановых сплавов в тлеющем разряде включает проведение указанного азотирования в газовой смеси азот-аргон, при этом используют упомянутую газовую смесь азот-аргон с процентным соотношением 60% N2 - 40% Ar, а упомянутое азотирование в тлеющем разряде проводят в магнитном поле при температуре 650-750°C в течение 4 часов, напряжении в разрядном промежутке 450-550 В и давлении в вакуумной камере 10-1-1 Па. Обеспечивается интенсификация процесса насыщения поверхности ионами азота при ионном азотировании титановых сплавов и получение развитой диффузионной зоны на титановой основе порядка 50-70 мкм. 1 ил., 1 пр.

Формула изобретения RU 2 625 518 C2

Способ азотирования изделий из титановых сплавов в тлеющем разряде, включающий проведение указанного азотирования в газовой смеси азот-аргон, отличающийся тем, что используют упомянутую газовую смесь азот-аргон с процентным соотношением 60% N2 - 40% Ar, при этом упомянутое азотирование в тлеющем разряде проводят в магнитном поле при температуре 650-750°C в течение 4 часов, напряжении в разрядном промежутке 450-550 В и давлении в вакуумной камере 10-1-1 Па.

Документы, цитированные в отчете о поиске Патент 2017 года RU2625518C2

US5334264 A1, 02.08.1994
СПОСОБ ФОРМИРОВАНИЯ НАНОКОМПОЗИТНОГО ПОКРЫТИЯ НА ПОВЕРХНОСТИ ИЗДЕЛИЯ 2013
  • Рыженков Вячеслав Алексеевич
  • Качалин Геннадий Викторович
  • Медведев Константин Сергеевич
  • Медников Александр Феликсович
RU2541261C2
СПОСОБ УПРОЧНЕНИЯ МЕТАЛЛОРЕЖУЩЕГО ИНСТРУМЕНТА 1993
  • Беккер Маргарита Сергеевна
  • Егорычева Елена Валерьевна
  • Куликов Михаил Юрьевич
  • Полетаев Владимир Алексеевич
  • Никоноров Алексей Владимирович
RU2101382C1
СПОСОБ НИЗКОТЕМПЕРАТУРНОГО АЗОТИРОВАНИЯ В ПЛАЗМЕ НЕСАМОСТОЯТЕЛЬНОГО ДУГОВОГО РАЗРЯДА НИЗКОГО ДАВЛЕНИЯ ТИТАНОВЫХ СПЛАВОВ ВТ6 И ВТ16 2010
  • Вершинин Данил Сергеевич
  • Смолякова Марина Юрьевна
RU2434074C1
CN 103805996 A, 21.05.2014.

RU 2 625 518 C2

Авторы

Рамазанов Камиль Нуруллаевич

Будилов Владимир Васильевич

Заббарова Лиана Наилевна

Хуснутдинов Расим Фаритович

Золотов Илья Владимирович

Даты

2017-07-14Публикация

2015-11-02Подача