СПОСОБ ИОННОГО АЗОТИРОВАНИЯ ТИТАНОВЫХ СПЛАВОВ Российский патент 2017 года по МПК C23C8/36 

Описание патента на изобретение RU2611003C1

Изобретение относится к машиностроительной промышленности, а именно к химико-термической обработке поверхности изделий из титанового сплава, и может быть использовано для повышения эксплуатационных характеристик изделий.

Известен способ низкотемпературного азотирования в плазме несамостоятельного дугового разряда низкого давления технически чистого титана ВТ-0 (RU №2434075 С1, МПК С23С 8/24, 2011 г.). В данном способе азотирование реализовано в плазме несамостоятельного дугового разряда низкого давления за счет использования в качестве плазмообразующей смеси газов азот-аргон. При этом азотирование выполняется при температуре 400°C и используют ионную и электронную компоненту плазмы. Время азотирования и количество аргона в плазмообразующей смеси устанавливается в зависимости от требуемой толщины модифицированного слоя.

Недостатком аналога является невысокая производительность и малая глубина азотированного слоя, необходимость использования сложного оборудования и специальных источников ионов, а также потребность в высоком вакууме (10-2 Па).

Известен способ азотирования в плазме тлеющего разряда (RU №2409700 С1, МПК С23С 8/36, 2011), включающий азотирование в тлеющем разряде и закалку, для осуществления которого проводят вакуумный нагрев изделий в плазме азота повышенной плотности. Плазму азота повышенной плотности формируют в кольцевой области вращения электронов, захваченных магнитным полем, силовые линии которого параллельны обрабатываемой поверхности, при этом электронное облако максимально локализовано у детали-катода.

Недостатком аналога является отсутствие возможности азотирования титановых сплавов.

Наиболее близким по технической сущности является способ низкотемпературного азотирования в плазме несамостоятельного дугового разряда низкого давления титановых сплавов ВТ-6 и ВТ-16 (RU №2434074 С1, МПК С23С 8/24, 2011 г.). Данный способ реализуется за счет пластической деформации, которую проводят до азотирования для формирования наноструктурированного или субмикрокристаллического состояния в объеме материала. Азотирование проводят на ионно-плазменной установке типа ННВ-6.6-И1. Процесс проводят при температуре 400°C в смеси газов азот-аргон с процентным соотношением 60% N2 - 40% Ar, давление в камере 10-2 Па, напряжение 70 В. Время азотирования 40 минут. После азотирования поверхностная микротвердость повысилась на 5,5%, при этом на поверхности сформировался слой с мелкодисперсными частицам нитрида титана глобулярной формы. Дальнейшее увеличение времени азотирования до 120 минут приводит к увеличению глубины модифицированного слоя до 10 мкм.

Недостатком прототипа является невысокая производительность и малая глубина азотированного слоя, необходимость использования сложного оборудования и специальных источников ионов, а также потребность в высоком вакууме (10-2 Па).

Задачей предлагаемого изобретения является повышение производительности и улучшение эксплуатационных свойств поверхности детали из титановых сплавов.

Техническим результатом способа является получение развитой диффузионной зоны с повышенной микротвердостью и глубиной азотированного слоя на титановой основе.

Поставленная задача решается, а технический результат достигается тем, что в способе ионного азотирования титановых сплавов в смеси газов азот-аргон с процентным соотношением 60% N2 - 40% Ar, согласно изобретению, процесс проводят в магнитном поле сначала при низком давлении порядка 10-1-1 Па в течение 4 часов, а затем при давлении 100-300 Па в течение 1 часа, температура в вакуумной камере 650-750°C, напряжение в разрядном промежутке 500-600 В.

Наличие магнитного поля при определенных соотношениях между напряжением разряда и давлением плазмообразующего газа приводит к значительному увеличению разрядного тока при некотором снижении напряжения. Увеличение тока разряда обусловлено тем, что в катодной области увеличивается генерация заряженных частиц осциллирующими электронами, захваченными магнитным полем; при этом возрастает число ионов, бомбардирующих поверхность, и число электронов, эмитируемых катодом. Также наложение магнитного поля заметно ускоряет формирование азотированного слоя, а низкое давление способствует более глубокому проникновению диффузии азота вглубь металла. Дальнейшее ионное азотирование при давлении 100-300 Па приводит к формированию защитного диффузионного слоя с высокой концентрацией азота и повышенной микротвердостью.

Существо изобретения поясняется чертежом. На чертеже изображена схема проведения ионного азотирования на установке ЭЛУ-5.

Установка состоит из вакуумной камеры 1, магнитной системы 2, системы ввода рабочего газа 3, системы откачки 4 и рабочего стола 5 с образцом 6.

Процесс азотирования осуществляется при температуре 650-750°C, которая существенно превышает точку температуры Кюри. Поэтому предусмотрена система охлаждения магнитной системы, обеспечивающая захват и удержание электронов над образцом.

Пример конкретной реализации способа.

В качестве материала для проведения испытаний был выбран титановый сплав ВТ-6. Способ реализовали на модернизированной установке ЭЛУ-5. В вакуумной камере на рабочем столе устанавливают предварительно очищенный образец, который подключают к отрицательному электроду. Затем создают рабочее давление в диапазоне от 10-1 до 1 Па, после чего вакуумную камеру прокачивают смесью газов азот-аргон (60% N2 - 40% Ar), подают напряжение 500-600 В. Образец, установленный в вакуумной камере, нагревают до температуры 650-750°C и азотируют в течение 4 часов. После этого рабочее давление в вакуумной камере повышают до 100-300 Па и выдерживают в течение 1 часа. Все процессы проходят за один вакуумный цикл, т.е. в одной камере и в одной и той же газовой среде (60% N2 - 40% Ar), что позволяет максимально снизить вспомогательное время, затрачиваемое на подготовительные операции, которые связаны с использованием разного оборудования и оснастки. При этом глубина азотированного слоя достигает 60-70 мкм, а микротвердость 20-30 ГПа.

Необходимо отметить следующие преимущества заявленного способа: большая глубина азотированного слоя, высокая твердость поверхности, высокая производительность процесса, простота установки, не требующая проектирования специальных приспособлений.

Таким образом, предлагаемый способ ионного азотирования титановых сплавов позволяет получить изделие из титанового сплава с большой глубиной азотированного слоя и высокой микротвердостью.

Похожие патенты RU2611003C1

название год авторы номер документа
СПОСОБ АЗОТИРОВАНИЯ ТИТАНОВЫХ СПЛАВОВ В ТЛЕЮЩЕМ РАЗРЯДЕ 2015
  • Рамазанов Камиль Нуруллаевич
  • Будилов Владимир Васильевич
  • Заббарова Лиана Наилевна
  • Хуснутдинов Расим Фаритович
  • Золотов Илья Владимирович
RU2625518C2
СПОСОБ НИЗКОТЕМПЕРАТУРНОГО ИОННОГО АЗОТИРОВАНИЯ ТИТАНОВЫХ СПЛАВОВ С ПОСТОЯННОЙ ПРОКАЧКОЙ ГАЗОВОЙ СМЕСИ 2018
  • Рамазанов Камиль Нуруллаевич
  • Агзамов Рашид Денисламович
  • Хусаинов Юлдаш Гамирович
  • Николаев Алексей Александрович
  • Тагиров Айнур Фирганович
  • Есипов Роман Сергеевич
  • Варданян Эдуард Леонидович
RU2687616C1
СПОСОБ ИНТЕНСИФИКАЦИИ ПРОЦЕССА НИЗКОТЕМПЕРАТУРНОГО ИОННОГО АЗОТИРОВАНИЯ ИЗДЕЛИЙ ИЗ ТИТАНОВЫХ СПЛАВОВ 2019
  • Рамазанов Камиль Нуруллаевич
  • Хусаинов Юлдаш Гамирович
  • Агзамов Рашид Денисламович
  • Николаев Алексей Александрович
  • Тагиров Айнур Фиргатович
RU2717124C1
СПОСОБ НИЗКОТЕМПЕРАТУРНОГО АЗОТИРОВАНИЯ В ПЛАЗМЕ НЕСАМОСТОЯТЕЛЬНОГО ДУГОВОГО РАЗРЯДА НИЗКОГО ДАВЛЕНИЯ ТИТАНОВЫХ СПЛАВОВ ВТ6 И ВТ16 2010
  • Вершинин Данил Сергеевич
  • Смолякова Марина Юрьевна
RU2434074C1
СПОСОБ НИЗКОТЕМПЕРАТУРНОГО АЗОТИРОВАНИЯ В ПЛАЗМЕ НЕСАМОСТОЯТЕЛЬНОГО ДУГОВОГО РАЗРЯДА НИЗКОГО ДАВЛЕНИЯ ТЕХНИЧЕСКИ ЧИСТОГО ТИТАНА ВТ1-0 2010
  • Вершинин Данил Сергеевич
  • Смолякова Марина Юрьевна
RU2434075C1
СПОСОБ АЗОТИРОВАНИЯ В ПЛАЗМЕ ПОВЫШЕННОЙ ПЛОТНОСТИ 2015
  • Рамазанов Камиль Нуруллаевич
  • Будилов Владимир Васильевич
  • Хуснутдинов Расим Фаритович
  • Заббарова Лиана Наилевна
  • Золотов Илья Владимирович
RU2611251C2
СПОСОБ МОДИФИКАЦИИ ПОВЕРХНОСТИ ИЗДЕЛИЙ ИЗ ТИТАНОВЫХ СПЛАВОВ В ВАКУУМЕ 2014
  • Рамазанов Камиль Нуруллаевич
  • Будилов Владимир Васильевич
  • Рамазанов Игорь Степанович
  • Агзамов Рашид Денисламович
  • Хусаинов Юлдаш Гамирович
  • Золотов Илья Владимирович
RU2562185C1
Способ ионно-плазменного азотирования изделий из титана или титанового сплава 2018
  • Денисов Владимир Викторович
  • Коваль Николай Николаевич
  • Щанин Петр Максимович
  • Островерхов Евгений Владимирович
  • Денисова Юлия Александровна
  • Иванов Юрий Федорович
  • Ахмадеев Юрий Халяфович
  • Лопатин Илья Викторович
RU2686975C1
СПОСОБ ПЛАЗМЕННОГО АЗОТИРОВАНИЯ ИЗДЕЛИЯ ИЗ СТАЛИ ИЛИ ИЗ ЦВЕТНОГО СПЛАВА 2009
  • Гаврилов Николай Васильевич
  • Мамаев Александр Сергеевич
RU2413033C2
СПОСОБ ПЛАЗМЕННОГО УПРОЧНЕНИЯ ВНУТРЕННЕЙ ЦИЛИНДРИЧЕСКОЙ ПОВЕРХНОСТИ 2017
  • Писарев Александр Александрович
  • Мозгрин Дмитрий Витальевич
  • Борисюк Юрий Владимирович
  • Орешникова Нина Михайловна
  • Степанова Татьяна Владимировна
RU2671522C1

Иллюстрации к изобретению RU 2 611 003 C1

Реферат патента 2017 года СПОСОБ ИОННОГО АЗОТИРОВАНИЯ ТИТАНОВЫХ СПЛАВОВ

Изобретение относится к машиностроительной промышленности, а именно к химико-термической обработке поверхности изделий из титанового сплава, и может быть использовано для повышения эксплуатационных характеристик изделий. Способ ионного азотирования титановых сплавов в газовой смеси азот-аргон с процентным соотношением 60% N2-40% Ar включает ионное азотирование в магнитном поле при температуре в вакуумной камере 650-750°C и напряжении в разрядном промежутке 500-600 В сначала при низком давлении упомянутой газовой смеси, составляющем 10-1-1 Па, в течение 4 часов, а затем при давлении упомянутой газовой смеси 100-300 Па в течение 1 часа. Обеспечивается получение развитой диффузионной зоны с повышенной микротвердостью и глубиной азотированного слоя на титановой основе. 1 ил., 1 пр.

Формула изобретения RU 2 611 003 C1

Способ ионного азотирования титановых сплавов в газовой смеси азот-аргон с процентным соотношением 60% N2-40% Ar, отличающийся тем, что ионное азотирование проводят в магнитном поле при температуре в вакуумной камере 650-750°C и напряжении в разрядном промежутке 500-600 В сначала при низком давлении упомянутой газовой смеси, составляющем 10-1-1 Па, в течение 4 часов, а затем при давлении упомянутой газовой смеси 100-300 Па в течение 1 часа.

Документы, цитированные в отчете о поиске Патент 2017 года RU2611003C1

US5334264 A1, 02.08.1994
СПОСОБ ФОРМИРОВАНИЯ НАНОКОМПОЗИТНОГО ПОКРЫТИЯ НА ПОВЕРХНОСТИ ИЗДЕЛИЯ 2013
  • Рыженков Вячеслав Алексеевич
  • Качалин Геннадий Викторович
  • Медведев Константин Сергеевич
  • Медников Александр Феликсович
RU2541261C2
СПОСОБ КОМБИНИРОВАННОЙ ИОННО-ПЛАЗМЕННОЙ ОБРАБОТКИ ИЗДЕЛИЙ ИЗ СТАЛЕЙ И ТВЕРДЫХ СПЛАВОВ 2008
  • Савостиков Виктор Михайлович
  • Сергеев Сергей Михайлович
  • Пинжин Юрий Павлович
RU2370570C1
СПОСОБ НИЗКОТЕМПЕРАТУРНОГО АЗОТИРОВАНИЯ В ПЛАЗМЕ НЕСАМОСТОЯТЕЛЬНОГО ДУГОВОГО РАЗРЯДА НИЗКОГО ДАВЛЕНИЯ ТИТАНОВЫХ СПЛАВОВ ВТ6 И ВТ16 2010
  • Вершинин Данил Сергеевич
  • Смолякова Марина Юрьевна
RU2434074C1
CN 103805996 A, 21.05.2014.

RU 2 611 003 C1

Авторы

Рамазанов Камиль Нуруллаевич

Заббарова Лиана Наилевна

Хуснутдинов Расим Фаритович

Золотов Илья Владимирович

Даты

2017-02-17Публикация

2015-11-02Подача