СОСТАВ СМЕСИ ДЛЯ ПОЛУЧЕНИЯ ТЕПЛОИЗОЛЯЦИОННОГО МАТЕРИАЛА Российский патент 2012 года по МПК C04B28/26 C04B111/40 

Описание патента на изобретение RU2439024C1

Изобретение относится к области строительных материалов и может быть использовано при изготовлении изделий, применяемых для тепло- и звукоизоляции жилых, административных и промышленных зданий.

Известны составы для получения легких теплоизоляционных материалов на основе жидкого стекла, содержащие, кроме щелочных силикатов, добавки, регулирующие структуру твердой пены и повышающие ее химическую стойкость. В качестве таких добавок используются порошкообразные оксиды, карбонаты, силикаты или алюмосиликаты, золы, поверхностно-активные вещества и др.

Известна смесь, содержащая 93…95% жидкого стекла плотностью 1400-1450 кг/м3, 7…5% тонкодисперсного наполнителя с удельной поверхностью 2000…3000 см2/г и 0,5…1,0% гидрофобизирующей добавки - кремнийорганической жидкости ГКЖ-94, ГКЖ-10 или ГКЖ-11 [Горлов Ю.П. и др. Технология теплоизоляционных и акустических материалов и изделий. - М., 1989, с.178, 179].

Недостатком этой смеси является низкий коэффициент вспенивания при термическом нагреве и неравномерность пористой структуры получаемых изделий.

Наиболее близким по сути к предлагаемому изобретению является состав [Патент RU 2268248 С1, кл. С04В 28/26, С04В 38/00, С04В 111/40 20.01.2006], содержащий жидкое стекло, тонкодисперсный наполнитель и гелеобразователь, отличающийся тем, что сырьевая смесь содержит в качестве тонкодисперсного наполнителя мраморную муку или гидроксиапатит, в качестве гелеобразователя - бихромат калия и дополнительно воду, при следующем соотношении компонентов, мас.%:

жидкое стекло 87-94 мраморная мука или гидроксиапатит 3-10 бихромат калия 0,1-1,0 вода 1-2

Недостатком этого состава является малая степень вспенивания при его термической поризации как в свободном объеме, так и в замкнутом объеме формы. Введение в качестве гелеобразователя бихромата калия даже в небольших количествах нецелесообразно, так как данное вещество по степени воздействия на организм относится к веществам 1-го класса опасности. Вводимые в состав жидкостекольной смеси мраморная мука или гидроксиапатит являются нейтральными к жидкому стеклу и не участвуют в процессе гелеобразования, а при температурах поризации от 450 до 700°С не принимают участие в процессе вспучивания, так как их температуры разложения выше указанных: температура разложения мраморной муки (СаСО3) с выделением углекислого газа - 850-900°С, температура разложения гидроксиапатита более 800°С. Таким образом, данные вещества не участвуют в процессе поризации, а выступают только как структурообразующая добавка.

Задачей настоящего изобретения является разработка состава жидкостекольной смеси с высокой поризационной способностью, которая при термическом нагреве в замкнутом объеме формы образует теплоизоляционный материал с небольшой плотностью, заданными геометрическими размерами и однородной, равномерной пористой внутренней структурой.

Поставленная задача достигается тем, что в сырьевую смесь, содержащую жидкое стекло и тонкоизмельченный минеральный наполнитель, в качестве наполнителя вводится тонкомолотый брусит (Mg(OH2)) и вода, при следующем соотношении компонентов в смеси (мас.%):

Жидкое стекло - 67-92;

Тонкоизмельченный брусит - 7-30;

Вода - 1-3.

Тонкоизмельченный брусит и вода предварительно смешиваются с жидким стеклом и далее, смесь перемешивается в смесителе в течение 5-7 минут и гранулируется в водном растворе хлоридов кальция или магния плотностью 1350-1390 кг/м3. Полученный при гранулировании исходной смеси жидкостекольный бисер высушивается до остаточной влажности 35-38% при температуре до 90°С. Затем гранулы в количестве, необходимом для получения изделия заданной плотности, засыпаются в форму с замкнутым объемом и подвергаются термическому или СВЧ-нагреву. При вспенивании материал заполняет собой свободный внутренний объем формы, поверхностные слои уплотняются, а поризуемый материал приобретает заданные геометрические размеры и форму.

Пример. Для изготовления материала было приготовлено семь составов смесей с различным содержанием компонентов. При приготовлении смесей использовалось жидкое стекло с модулем m=3 и плотностью 1450 кг/м3, которое смешивалось с тонкоизмельченным бруситом и водой в соответствующих пропорциях. Исходные смеси тщательно перемешивались в течение 5-7 мин и подвергались жидкостной грануляции в растворе хлорида кальция плотностью 1350 кг/м3. Извлеченные через 15-20 мин из раствора гранулы высушивались до остаточной абсолютной влажности 35-38%. Гранулированная жидкостекольная смесь засыпалась в разборную металлическую форму с внутренним объемом 100 см3 в необходимом количестве, которое рассчитывалось по формуле:

m=ρ·V·(1+Wa),

где m - масса гранул, кг;

ρ - заданная плотность изделий, кг/м3;

V - внутренний объем формы, кг/м3;

Wa - абсолютная влажность гранул, отн.ед.

Поризация материала в форме осуществлялась в муфельной печи при температуре 450°С в течение 15-30 минут.

Коэффициент вспучивания гранул исследованных составов определялся по отношению объема вспененных при 450°С к первоначальному объему гранул.

Данные по составам смесей и свойствам полученных материалов представлены в табл.1.

Результаты испытаний подтверждают возможность изготовления из предлагаемых составов смеси вспененных материалов с широким диапазоном свойств как по плотности и прочности, так и по теплопроводности.

В табл.2 представлены сравнительные характеристики материалов, изготовленных по составу, предложенному в патенте RU 2268248 С1, кл. С04В 28/26, С04В 38/00, С04В 111/40 20.01.2006 (состав 1) и по данному изобретению (состав 2). Коэффициент вспенивания в прототипе не приводится, но для сравнения характеристик материалов этот показатель был определен из отношения объема гранул до вспучивания и после термической обработки. Коэффициент вспучивания жидкосткольных гранул предлагаемого состава определялся аналогично.

Преимуществом предложенного состава смеси является возможность сохранения силиката натрия в гидратированном состоянии внутри гранул жидкостекольной смеси, упрочнение которых происходит за счет гелеобразования в поверхностном слое гранул. Гелеобразование происходит в результате протекания обменных реакций между силикатом натрия и раствором хлорида кальция, по следующей схеме:

Na2O·3SiO2·nH2O+CaCl2=CaO·SiO2·mH2O+2Si(OH)4+2NaCl

Образующиеся в поверхностном слое в результате этого взаимодействия гидросиликаты кальция и гель кремневой кислоты образуют водонепроницаемую, упрочняющуюся во времени оболочку, которая надежно блокирует дальнейшее взаимодействие жидкого стекла с хлоридом кальция. Гидрооксид магния (брусит), так же как и мраморная мука или гидроксиапатит в прототипе, обладает небольшой растворимостью в воде и поэтому, находясь в составе жидкостекольной композиции, не разрушает структуру жидкого стекла. Мраморная мука (или гидроксиапатит) в составе смеси разлагается при температуре более 800°С и не оказывает влияния на процесс поризации смеси, которая протекает в интервале температур 130-450°С. Брусит дегидратируется при 350-450°С и температура его разложения совпадает с интервалом температур поризации жидкостекольной смеси. Объем водяного пара, выделяемого 1 г брусита при нормальных условиях, составляет 0,38 л, а при температуре 450°С - 1 л. Выделяемые пары воды способствуют более длительному пребыванию поризуемой смеси в пиропластичном состоянии и интенсифицируют процесс ее поризации. При этом оказывается положительное влияние на формирование равномерной пористой структуры изделий с преобладающим размером пор 1-3 мм и более низкой плотностью.

Изготавливаемый по предлагаемому составу теплоизоляционный вспененный материал в виде плит, блоков или другой заданной формы можно использовать для целей тепло- и энергосбережения на различных объектах жилищного и промышленного назначения.

Таблица 1 Компоненты смеси и свойства полученного материала Содержание компонентов (мас.%) и уровень свойств 1 состав 2 состав 3 состав 4 состав 5 состав 6 состав 7 состав Жидкое стекло 92 85 80 75 73 70 67 Брусит 7 13,5 18 22,5 24 27 30 Вода 1 1,5 2 2,5 3 3 3 Плотность, кг/м3 110 160 190 220 230 255 300 Прочность при сжатии, МПа 0,25 0,35 0,38 0,45 0,52 0,87 1,05 Коэффициент теплопроводности, Вт/м·°С 0,045 0,057 0,062 0,068 0,070 0,073 0,081 Коэффициент вспучивания гранул в свободном объеме 48 40 37 34 29 24 20 Средний размер пор, мм 1-3 1-3 1-3 1-3 1-3 1-3 1-3

Таблица 2 Свойства полученного материала Состав 2 Состав 1 Плотность, кг/м3 160 150 Прочность при сжатии, МПа 0,75 0,5 Коэффициент теплопроводности, Вт/м·°С 0,062 0,124 Коэффициент вспучивания 19,5/40* 11/20* Средний размер пор, мм 1-3 2-5 * вспучивание в замкнутом объеме/вспучивание в свободном объеме.

Похожие патенты RU2439024C1

название год авторы номер документа
ВСПЕНЕННЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2004
  • Лотов Василий Агафонович
  • Рудик Константин Александрович
RU2268248C1
СПОСОБ ИЗГОТОВЛЕНИЯ ГРАНУЛИРОВАННОГО ПОРИСТОГО ЗАПОЛНИТЕЛЯ ДЛЯ БЕТОНОВ 2010
  • Лотов Василий Агафонович
  • Кутугин Виктор Александрович
  • Митина Наталия Александровна
RU2426703C1
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ПОЛУЧЕНИЯ ПЕНОСИЛИКАТНОГО ТЕПЛОИЗОЛЯЦИОННОГО МАТЕРИАЛА И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2007
  • Кетов Александр Анатольевич
  • Пузанов Игорь Станиславович
  • Саулин Дмитрий Владимирович
RU2341483C2
СОСТАВ И СПОСОБ ПОЛУЧЕНИЯ ПЕНОСИЛИКАТНОГО МАТЕРИАЛА 2007
  • Борило Людмила Павловна
  • Заболотская Анастасия Владимировна
  • Верещагин Владимир Иванович
RU2346906C1
СОСТАВ И СПОСОБ ПОЛУЧЕНИЯ ВСПУЧЕННОГО СИЛИКАТНОГО МАТЕРИАЛА 1998
  • Лотов В.А.
  • Верещагин В.И.
  • Стальмаков Ю.А.
RU2173674C2
МИНЕРАЛЬНЫЙ ВСПЕНЕННО-ВОЛОКНИСТЫЙ ТЕПЛОИЗОЛЯЦИОННЫЙ МАТЕРИАЛ 2014
  • Кисиль Игорь Александрович
RU2568199C1
СЫРЬЕВАЯ СМЕСЬ И СПОСОБ ПОЛУЧЕНИЯ ПЕНОСИЛИКАТНОГО ТЕПЛОИЗОЛЯЦИОННОГО МАТЕРИАЛА 2010
  • Левашов Андрей Сергеевич
  • Буков Николай Николаевич
  • Горохов Роман Вячеславович
  • Ревенко Виталий Владиславович
RU2442760C1
СПОСОБ ПОЛУЧЕНИЯ ТЕПЛОИЗОЛЯЦИОННОГО МАТЕРИАЛА - ПЕНОСТЕКЛА И ШИХТА ДЛЯ ЕГО ИЗГОТОВЛЕНИЯ 2017
  • Дамдинова Дарима Ракшаевна
  • Лизунов Алексей Анатольевич
  • Дружинин Дмитрий Константинович
  • Павлов Виктор Евгеньевич
  • Анчилоев Намсарай Николаевич
  • Вторушин Никита Сергеевич
  • Оксахоева Эржена Алексеевна
RU2671582C1
КОМПОЗИЦИОННЫЙ ТЕПЛОИЗОЛЯЦИОННЫЙ НЕГОРЮЧИЙ МАТЕРИАЛ 2016
  • Щеголев Игорь Юрьевич
  • Емельянов Владимир Михайлович
RU2638071C1
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ПОЛУЧЕНИЯ ПЕНОСИЛИКАТНОГО МАТЕРИАЛА И СПОСОБ ИЗГОТОВЛЕНИЯ ПЕНОСИЛИКАТНОГО МАТЕРИАЛА (ВАРИАНТЫ) 2009
  • Казанцева Лидия Константиновна
  • Овчаренко Геннадий Иванович
RU2405743C1

Реферат патента 2012 года СОСТАВ СМЕСИ ДЛЯ ПОЛУЧЕНИЯ ТЕПЛОИЗОЛЯЦИОННОГО МАТЕРИАЛА

Изобретение относится к строительным материалам и может быть использовано при изготовлении изделий, применяемых для тепло- и звукоизоляции. Технический результат - снижение плотности, повышение равномерности пористой структуры. Состав смеси для получения теплоизоляционного материала, подвергаемой грануляции в растворе CaCl2, включающий жидкое стекло, тонкоизмельченный минеральный наполнитель и воду, содержит в качестве наполнителя брусит - Mg(OH2), при следующем соотношении компонентов в смеси (мас.%):жидкое стекло 67-92, тонкоизмельченный брусит 7-30, вода 1-3. 2 табл.

Формула изобретения RU 2 439 024 C1

Состав смеси для получения теплоизоляционного материала, подвергаемой грануляции в растворе CaCl2, включающий жидкое стекло, тонкоизмельченный минеральный наполнитель и воду, отличающийся тем, что смесь в качестве наполнителя содержит брусит - Mg(OH2) при следующем соотношении компонентов в смеси, мас.%:
Жидкое стекло 67-92 Тонкоизмельченный брусит 7-30 Вода 1-3

Документы, цитированные в отчете о поиске Патент 2012 года RU2439024C1

ВСПЕНЕННЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2004
  • Лотов Василий Агафонович
  • Рудик Константин Александрович
RU2268248C1
СМЕСЬ ДЛЯ ПОЛУЧЕНИЯ ТЕПЛОИЗОЛЯЦИОННОГО МАТЕРИАЛА И СПОСОБ ЕГО ПОЛУЧЕНИЯ 1993
  • Малявский Н.И.
  • Генералов Б.В.
  • Крифукс О.В.
  • Павлюковец В.В.
RU2087447C1
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ПОЛУЧЕНИЯ ПЕНОСИЛИКАТНОГО ТЕПЛОИЗОЛЯЦИОННОГО МАТЕРИАЛА И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2007
  • Кетов Александр Анатольевич
  • Пузанов Игорь Станиславович
  • Саулин Дмитрий Владимирович
RU2341483C2
СПОСОБ ИЗГОТОВЛЕНИЯ ПОРИСТЫХ СИЛИКАТНЫХ МАТЕРИАЛОВ 1998
  • Брыков С.И.
  • Бусыгин В.М.
  • Валеев Р.Г.
  • Гайсин Л.Г.
  • Галимов К.С.
  • Закиров Ф.А.
  • Корнеев В.И.
  • Мочалов Н.А.
  • Мухаметов И.Х.
  • Поддубный Ю.А.
  • Тихонова Т.Д.
  • Федурин А.А.
RU2134668C1
СОСТАВ И СПОСОБ ПОЛУЧЕНИЯ ВСПУЧЕННОГО СИЛИКАТНОГО МАТЕРИАЛА 1998
  • Лотов В.А.
  • Верещагин В.И.
  • Стальмаков Ю.А.
RU2173674C2
DE 3202623 A1, 04.08.1983
ГОРЛОВ Ю.П
и др
Технология теплоизоляционных, звукоизоляционных и акустических материалов и изделий
- М.: Высшая школа, 1989, с.178.

RU 2 439 024 C1

Авторы

Лотов Василий Агафонович

Кутугин Виктор Александрович

Митина Наталия Александровна

Даты

2012-01-10Публикация

2010-04-30Подача