Изобретение относится к области металлургии благородных металлов, в частности к платиновым сплавам, предназначенным для изготовления катализаторных сеток, используемых химической промышленностью.
Использование каталитических сеточных пакетов на предприятиях химической промышленности в процессах окисления аммиака (при производстве азотной кислоты и ее производных) широко практикуется на предприятиях разных стран мира. Каталитическую функцию при этом выполняют, как правило, сетки, изготовленные из платиновых сплавов. Жесткие условия эксплуатации (высокие температура и давление) приводят к постепенной эрозии и разрушению сеточного полотна. Необходимость обеспечения высокой каталитической активности сетки и сохранение ее механических характеристик на возможно более длительные сроки эксплуатации предъявляют повышенные и специфические требования к качеству платиновых сплавов, применяемых для изготовления катализаторных сеток.
Наиболее широко при изготовлении катализаторных сеток применяют сплавы на основе платины, содержащие родий и палладий.
Так, известен платиновый сплав для катализаторных сеток следующего состава, мас.%:
[ГОСТ 13498-79. «Платина и платиновые сплавы. Марки». Государственный комитет СССР по стандартам. Москва, Издательство стандартов. - 1980, 5 с.].
Данный сплав обладает высокой каталитической активностью, достаточно технологичен для сеточного производства, обеспечивает приемлемую живучесть каталитических пакетов при их эксплуатации и является аналогом заявляемому сплаву.
Недостатком сплава-аналога является его чрезмерно высокая стоимость, вызванная высоким содержанием дорогостоящей платины (от 92,2% до 92,8%).
Наиболее близким по составу к заявляемому сплаву является известный платиновый сплав для катализаторных сеток, содержащий, мас.%:
[Межгосударственный стандарт ГОСТ 13498-79. «Платина и платиновые сплавы. Марки». Государственный комитет СССР по стандартам. Москва, Издательство стандартов. - 1980, 5 с.].
Данный сплав имеет пониженное до 81% содержание платины при относительно высокой концентрации палладия, обладает при этом высокой каталитической активностью, обеспечивает приемлемую живучесть каталитических пакетов при их эксплуатации и принят в качестве прототипа заявляемому сплаву.
Недостатками сплава-прототипа являются:
- его высокая стоимость, вызванная высокой концентрацией дорогостоящей платины (от 80,3% до 81,7%). Каталитические пакеты, включающие сетки, изготовленные из сплава-прототипа, и находящиеся на балансе химических предприятий, являются серьезным финансовым обременением их конечной продукции;
- недостаточная стабильность механических свойств сплава и изготовленных из него полуфабрикатов по их длине и сечению, вызванная формированием зон с разнозернистой структурой при кристаллизации литых заготовок. Наличие зерен увеличенных размеров в структуре литого сплава-прототипа является нежелательным, так как ведет к технологическим трудностям при изготовлении тонкой проволоки и сеточного полотна.
Задачей, на решение которой направлено предлагаемое техническое решение, является разработка состава нового платинового сплава для катализаторных сеток, имеющего существенно меньшее, в сравнении с прототипом, содержание платины, а следовательно, и меньшую стоимость, обеспечивающего формирование однородной мелкозернистой структуры при изготовлении литых заготовок и полуфабрикатов со стабильными механическими свойствам, при сохранении высокой каталитической активности, и обеспечивающего длительную эксплуатацию изготовленных из него каталитических пакетов.
Технический результат достигается тем, что платиновый сплав для катализаторных сеток, содержащий палладий и родий, дополнительно содержит иридий при следующем соотношении компонентов, мас.%:
Общим для сплава-прототипа и заявляемого платинового сплава является наличие в сплаве платины, палладия и родия.
Включение в состав заявляемого сплава добавки иридия, являющегося эффективным модификатором, обеспечивает при кристаллизации расплава формирование мелкозернистой однородной структуры, позволяющей получать литые заготовки и полуфабрикаты со стабильными механическими свойствами как по их длине, так и по сечению. Таким образом, введение в сплав иридия повышает технологические свойства сплава при его использовании для изготовления тонкой проволоки и сеточного полотна. Влияние иридия как модификатора сплава особенно возрастает при попытках получить сплавы с пониженным содержанием платины как основного компонента.
Снижение содержания иридия в платиновом сплаве ниже 0,001% недопустимо, так как ведет к ослаблению модифицирующего воздействия иридия на сплав.
Превышение верхнего предела содержания иридия (0,05%) в платиновом сплаве нецелесообразно, так как не приводит к улучшению технологических характеристик сплава при его дальнейшем использовании в производстве катализаторных сеток.
Соотношение компонентов в заявляемом сплаве предложено на основании экспериментальных исследований, включающих приготовление различных сплавов, изготовление из них тонкой проволоки и катализаторных сеток, использование последних в каталитических пакетах в аппаратах окисления аммиака.
Содержание родия в заявляемом сплаве в интервале от 2,7% до 3,3% обеспечивает сохранение необходимых механических характеристик сплаву и изготовленным из него сеткам и является оптимальным.
Соотношение платины и палладия в заявляемом сплаве также является оптимальным, выбрано экспериментально, исходя из необходимости сохранения высокой каталитической активности сетки, обеспечения длительного срока ее эксплуатации и максимально возможного при этом снижения концентрации дорогостоящей платины.
Так, снижение содержания платины в сплаве ниже 59,2% нежелательно, так как ведет к уменьшению каталитической активности сетки и сокращению срока ее службы. Увеличение содержания платины в сплаве выше 60,8% также нецелесообразно, так как ведет к необоснованному повышению стоимости катализаторных сеток.
Пример.
Получение платинового сплава для катализаторных сеток проводили прямым сплавлением чистых компонентов и сплава ПлИ-5, который использовали в качестве лигатуры. Плавку проводили в индукционной печи УИПВ-63-10-0,01 фирмы «РЭЛТЕК» в тигле из диоксида циркония, стабилизированного CaO.
Состав шихты:
- рубленые слитки и стружка платины аффинированной марки ПлА-0 (чистотой 99,98%) - 4300,0 г;
- стружка сплава ПлИ-5 - 20,0 г;
- рубленые слитки, порошок и стружка палладия аффинированного - 2665,0 г;
- порошок родия (чистотой не менее 99,95% основного компонента) - 216,1 г.
Порошок родия смешали с порошком и стружкой палладия и стружкой платины. Масса стружки (порошка) палладия или платины должна быть не менее массы порошка родия. Все компоненты шихты загрузили в плавильный тигель индукционной печи. Общая масса загружаемой шихты подбиралась исходя из вместимости плавильного тигля и составляла - (7200±100) г. Расчетный состав шихты, %: Pd - 37,00; Rh - 3,00; Ir - 0,01; Pt - остальное.
Шихту расплавляли в атмосфере аргона. Расплав подвергли изотермической выдержке в течение 2 мин, слив расплава провели при температуре 1700°С (по показаниям оптического пирометра), в атмосфере аргона, в предварительно разогретую до 200°С медную изложницу.
Охлаждение слитка провели в изложнице в течение 30 мин, после чего открыли крышку печи, выгрузили слиток и его дальнейшее охлаждение провели опусканием в проточную воду.
Масса полученного сплава составила 7200,1 г. После механической зачистки поверхности полученный слиток был опробован, проба подвергнута химическому анализу.
Химический анализ пробы показал, что полученный платиновый сплав содержит 37,05% палладия, 2,89% родия, 0,010% иридия, остальное - платина.
Полученный сплав был прокован в прутки сечением 15×15 мм, длиной (260-290) мм и успешно использован для изготовления катализаторной сетки.
название | год | авторы | номер документа |
---|---|---|---|
ПЛАТИНОВЫЙ СПЛАВ ДЛЯ КАТАЛИЗАТОРНЫХ СЕТОК | 2013 |
|
RU2537672C1 |
СПЛАВ НА ОСНОВЕ ПЛАТИНЫ ДЛЯ КАТАЛИЗАТОРНЫХ СЕТОК | 2014 |
|
RU2563113C1 |
КАТАЛИЗАТОР ДЛЯ ХИМИЧЕСКИХ ПРОЦЕССОВ, НАПРИМЕР КОНВЕРСИИ АММИАКА, ОКИСЛЕНИЯ УГЛЕВОДОРОДОВ, ДИОКСИДА СЕРЫ, ОЧИСТКИ ВЫХЛОПНЫХ ГАЗОВ | 1994 |
|
RU2069584C1 |
ПАКЕТ ГАЗОПРОНИЦАЕМЫХ СЕТОК ИЗ БЛАГОРОДНЫХ МЕТАЛЛОВ ДЛЯ КАТАЛИТИЧЕСКИХ ПРОЦЕССОВ | 1999 |
|
RU2150389C1 |
КАТАЛИЗАТОРНАЯ СЕТКА | 2020 |
|
RU2776371C1 |
ПЛАТИНОИДНЫЙ СЕТОЧНЫЙ КАТАЛИЗАТОР | 2005 |
|
RU2294239C1 |
Каталитическая система для конверсии аммиака | 2017 |
|
RU2638927C1 |
УСТРОЙСТВО ДЛЯ УЛАВЛИВАНИЯ ПЛАТИНОИДОВ ПРИ КАТАЛИТИЧЕСКОМ ОКИСЛЕНИИ АММИАКА | 1997 |
|
RU2119381C1 |
Двуслойный сетчатый катализатор для окисления аммиака | 1978 |
|
SU1271365A3 |
УСТРОЙСТВО ДЛЯ УЛАВЛИВАНИЯ ПЛАТИНОИДОВ ПРИ КАТАЛИТИЧЕСКОМ ОКИСЛЕНИИ АММИАКА | 1999 |
|
RU2154020C1 |
Изобретение относится к области металлургии благородных металлов, в частности к платиновым сплавам, предназначенным для изготовления катализаторных сеток, используемых химической промышленностью. Заявлен платиновый сплав для катализаторных сеток, содержащий, мас.%: палладий 36,5-37,5, родий 2,7-3,3, иридий 0,001-0,05, платина - остальное. Технический результат - обеспечение стабильных механических свойств при сохранении высокой каталитической активности изготовленных из него каталитических пакетов.
Платиновый сплав для катализаторных сеток, содержащий палладий и родий, отличающийся тем, что он дополнительно содержит иридий при следующем соотношении компонентов, мас.%:
0 |
|
SU296584A1 | |
Катализатор для окисления аммиака | 1972 |
|
SU449471A3 |
КАТАЛИЗАТОР ДЛЯ ОКИСЛЕНИЯ АММИАКА | 2007 |
|
RU2333794C1 |
Устройство и способ сжатия испаренного газа | 2017 |
|
RU2729968C2 |
Печь-кухня, могущая работать, как самостоятельно, так и в комбинации с разного рода нагревательными приборами | 1921 |
|
SU10A1 |
Авторы
Даты
2012-01-10—Публикация
2011-01-12—Подача